Plastic deformations in thin rotational shells
The paper focuses on the method of calculation of evolution shells beyond the elastic limit. The conclusion of the basic system of differential equations is based on the linear shell theory with regard to the Hirchhoff-Lave hypothesis and on the physical equations for small elastic-plastic deformati...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2016-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | http://dx.doi.org/10.1051/matecconf/20168601016 |
Summary: | The paper focuses on the method of calculation of evolution shells beyond the elastic limit. The conclusion of the basic system of differential equations is based on the linear shell theory with regard to the Hirchhoff-Lave hypothesis and on the physical equations for small elastic-plastic deformation theory using the method of elastic decisions. The boundary conditions are formulated for Cauchy problem: rigid attachment, hinged support, and free margin. The spherical shell boundary conditions in the pole are obtained from the conditions of symmetry and antisymmetry functions. The convergence of the elastic method and the method of the occurrence of superficial plastic deformations are studied. Also the stress-strain state in the spherical shell is determined and the convergence of the obtained solutions was studied. The results are presented on the symmetric load ring applied to the middle of the Meridian and on the load that can be considered as a concentrated force. The sufficient quantity of iterations is established to achieve the accuracy of 0.1%. The graphs are presented for radial displacement and for meridional bending moment as the functions that converge more rapidly and more slowly respectively. |
---|---|
ISSN: | 2261-236X |