Numerical Range of Moore–Penrose Inverse Matrices
Let <i>A</i> be an <i>n</i>-by-<i>n</i> matrix. The numerical range of <i>A</i> is defined as <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <m...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/5/830 |
_version_ | 1797567463645249536 |
---|---|
author | Mao-Ting Chien |
author_facet | Mao-Ting Chien |
author_sort | Mao-Ting Chien |
collection | DOAJ |
description | Let <i>A</i> be an <i>n</i>-by-<i>n</i> matrix. The numerical range of <i>A</i> is defined as <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <msup> <mi>x</mi> <mo>*</mo> </msup> <mi>A</mi> <mi>x</mi> <mo>:</mo> <mi>x</mi> <mo>∈</mo> <msup> <mrow> <mi mathvariant="double-struck">C</mi> </mrow> <mi>n</mi> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>*</mo> </msup> <mi>x</mi> <mo>=</mo> <mn>1</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. The Moore–Penrose inverse <inline-formula> <math display="inline"> <semantics> <msup> <mi>A</mi> <mo>+</mo> </msup> </semantics> </math> </inline-formula> of <i>A</i> is the unique matrix satisfying <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> <mo>=</mo> <mi>A</mi> <mo>,</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> <msup> <mi>A</mi> <mo>+</mo> </msup> <mo>=</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mo>,</mo> <msup> <mrow> <mo>(</mo> <mi>A</mi> <msup> <mi>A</mi> <mo>+</mo> </msup> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>=</mo> <mi>A</mi> <msup> <mi>A</mi> <mo>+</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>=</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> </mrow> </semantics> </math> </inline-formula>. This paper investigates the numerical range of the Moore–Penrose inverse <inline-formula> <math display="inline"> <semantics> <msup> <mi>A</mi> <mo>+</mo> </msup> </semantics> </math> </inline-formula> of a matrix <i>A</i>, and examines the relation between the numerical ranges <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mo>(</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>. |
first_indexed | 2024-03-10T19:43:19Z |
format | Article |
id | doaj.art-ef5c946ae71d4e88913615edf7c7c38f |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T19:43:19Z |
publishDate | 2020-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-ef5c946ae71d4e88913615edf7c7c38f2023-11-20T01:06:36ZengMDPI AGMathematics2227-73902020-05-018583010.3390/math8050830Numerical Range of Moore–Penrose Inverse MatricesMao-Ting Chien0Department of Mathematics, Soochow University, Taipei 111002, TaiwanLet <i>A</i> be an <i>n</i>-by-<i>n</i> matrix. The numerical range of <i>A</i> is defined as <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <msup> <mi>x</mi> <mo>*</mo> </msup> <mi>A</mi> <mi>x</mi> <mo>:</mo> <mi>x</mi> <mo>∈</mo> <msup> <mrow> <mi mathvariant="double-struck">C</mi> </mrow> <mi>n</mi> </msup> <mo>,</mo> <msup> <mi>x</mi> <mo>*</mo> </msup> <mi>x</mi> <mo>=</mo> <mn>1</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>. The Moore–Penrose inverse <inline-formula> <math display="inline"> <semantics> <msup> <mi>A</mi> <mo>+</mo> </msup> </semantics> </math> </inline-formula> of <i>A</i> is the unique matrix satisfying <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> <mo>=</mo> <mi>A</mi> <mo>,</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> <msup> <mi>A</mi> <mo>+</mo> </msup> <mo>=</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mo>,</mo> <msup> <mrow> <mo>(</mo> <mi>A</mi> <msup> <mi>A</mi> <mo>+</mo> </msup> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>=</mo> <mi>A</mi> <msup> <mi>A</mi> <mo>+</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>=</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> </mrow> </semantics> </math> </inline-formula>. This paper investigates the numerical range of the Moore–Penrose inverse <inline-formula> <math display="inline"> <semantics> <msup> <mi>A</mi> <mo>+</mo> </msup> </semantics> </math> </inline-formula> of a matrix <i>A</i>, and examines the relation between the numerical ranges <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mo>(</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>W</mi> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/8/5/830Moore–Penrose inversenumerical rangeweighted shift matrix |
spellingShingle | Mao-Ting Chien Numerical Range of Moore–Penrose Inverse Matrices Mathematics Moore–Penrose inverse numerical range weighted shift matrix |
title | Numerical Range of Moore–Penrose Inverse Matrices |
title_full | Numerical Range of Moore–Penrose Inverse Matrices |
title_fullStr | Numerical Range of Moore–Penrose Inverse Matrices |
title_full_unstemmed | Numerical Range of Moore–Penrose Inverse Matrices |
title_short | Numerical Range of Moore–Penrose Inverse Matrices |
title_sort | numerical range of moore penrose inverse matrices |
topic | Moore–Penrose inverse numerical range weighted shift matrix |
url | https://www.mdpi.com/2227-7390/8/5/830 |
work_keys_str_mv | AT maotingchien numericalrangeofmoorepenroseinversematrices |