Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100

<p>Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century i...

Full description

Bibliographic Details
Main Authors: J. Keeble, B. Hassler, A. Banerjee, R. Checa-Garcia, G. Chiodo, S. Davis, V. Eyring, P. T. Griffiths, O. Morgenstern, P. Nowack, G. Zeng, J. Zhang, G. Bodeker, S. Burrows, P. Cameron-Smith, D. Cugnet, C. Danek, M. Deushi, L. W. Horowitz, A. Kubin, L. Li, G. Lohmann, M. Michou, M. J. Mills, P. Nabat, D. Olivié, S. Park, Ø. Seland, J. Stoll, K.-H. Wieners, T. Wu
Format: Article
Language:English
Published: Copernicus Publications 2021-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/5015/2021/acp-21-5015-2021.pdf
_version_ 1818964957250715648
author J. Keeble
J. Keeble
B. Hassler
A. Banerjee
A. Banerjee
R. Checa-Garcia
G. Chiodo
G. Chiodo
S. Davis
V. Eyring
V. Eyring
P. T. Griffiths
P. T. Griffiths
O. Morgenstern
P. Nowack
P. Nowack
G. Zeng
J. Zhang
G. Bodeker
G. Bodeker
S. Burrows
P. Cameron-Smith
D. Cugnet
C. Danek
M. Deushi
L. W. Horowitz
A. Kubin
L. Li
G. Lohmann
M. Michou
M. J. Mills
P. Nabat
D. Olivié
S. Park
Ø. Seland
J. Stoll
K.-H. Wieners
T. Wu
author_facet J. Keeble
J. Keeble
B. Hassler
A. Banerjee
A. Banerjee
R. Checa-Garcia
G. Chiodo
G. Chiodo
S. Davis
V. Eyring
V. Eyring
P. T. Griffiths
P. T. Griffiths
O. Morgenstern
P. Nowack
P. Nowack
G. Zeng
J. Zhang
G. Bodeker
G. Bodeker
S. Burrows
P. Cameron-Smith
D. Cugnet
C. Danek
M. Deushi
L. W. Horowitz
A. Kubin
L. Li
G. Lohmann
M. Michou
M. J. Mills
P. Nabat
D. Olivié
S. Park
Ø. Seland
J. Stoll
K.-H. Wieners
T. Wu
author_sort J. Keeble
collection DOAJ
description <p>Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from <span class="inline-formula">∼</span> 300 <span class="inline-formula">DU</span> in 1850 to <span class="inline-formula">∼</span> 305 <span class="inline-formula">DU</span> in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be <span class="inline-formula">∼</span> 10 <span class="inline-formula">DU</span> higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer–Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by <span class="inline-formula">∼</span> 0.5 <span class="inline-formula">ppmv</span> at 70 <span class="inline-formula">hPa</span>. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by <span class="inline-formula">∼</span> 0.5 <span class="inline-formula">ppmv</span> from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (<span class="inline-formula">∼</span> 2 <span class="inline-formula">ppmv</span>) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions.</p>
first_indexed 2024-12-20T13:09:22Z
format Article
id doaj.art-ef635a5c9b2b4b80bc7f3be573812405
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-20T13:09:22Z
publishDate 2021-03-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-ef635a5c9b2b4b80bc7f3be5738124052022-12-21T19:39:43ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-03-01215015506110.5194/acp-21-5015-2021Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100J. Keeble0J. Keeble1B. Hassler2A. Banerjee3A. Banerjee4R. Checa-Garcia5G. Chiodo6G. Chiodo7S. Davis8V. Eyring9V. Eyring10P. T. Griffiths11P. T. Griffiths12O. Morgenstern13P. Nowack14P. Nowack15G. Zeng16J. Zhang17G. Bodeker18G. Bodeker19S. Burrows20P. Cameron-Smith21D. Cugnet22C. Danek23M. Deushi24L. W. Horowitz25A. Kubin26L. Li27G. Lohmann28M. Michou29M. J. Mills30P. Nabat31D. Olivié32S. Park33Ø. Seland34J. Stoll35K.-H. Wieners36T. Wu37Department of Chemistry, University of Cambridge, Cambridge, UKNational Centre for Atmospheric Science (NCAS), University of Cambridge, Cambridge, UKDeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyNOAA Earth System Research Laboratory Chemical Sciences Division, Boulder, CO, USACooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USALaboratoire des sciences du climat et de l'environnement, Gif-sur-Yvette, FranceDepartment of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, SwitzerlandDepartment of Applied Physics and Applied Math, Columbia University, New York, NY, USANOAA Earth System Research Laboratory Chemical Sciences Division, Boulder, CO, USADeutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyUniversity of Bremen, Institute of Environmental Physics (IUP), Bremen, GermanyDepartment of Chemistry, University of Cambridge, Cambridge, UKNational Centre for Atmospheric Science (NCAS), University of Cambridge, Cambridge, UKNational Institute of Water and Atmospheric Research (NIWA), Wellington, New ZealandGrantham Institute, Department of Physics and the Data Science Institute, Imperial College London, London, UKClimatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UKNational Institute of Water and Atmospheric Research (NIWA), Wellington, New ZealandKey Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, Gansu, ChinaBodeker Scientific, 42 Russell Street, Alexandra, New ZealandSchool of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New ZealandAtmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USAAtmosphere, Earth and Energy Division, Lawrence Livermore National Laboratory, Livermore, CA, USALaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, Sorbonne Université/CNRS / École Normale Supérieure – PSL Research University/École Polytechnique – IPP, Paris, FranceAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Sciences, Bremerhaven, GermanyMeteorological Research Institute (MRI), Tsukuba, JapanGFDL/NOAA, Princeton, NJ, USALeibniz Institute for Tropospheric Research, Leipzig, GermanyState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Sciences, Bremerhaven, GermanyCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceAtmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USACNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceNorwegian Meteorological Institute, Oslo, NorwaySeoul National University, Seoul, South KoreaNorwegian Meteorological Institute, Oslo, NorwayLeibniz Institute for Tropospheric Research, Leipzig, GermanyMax Planck Institute for Meteorology, Hamburg, GermanyBeijing Climate Center, China Meteorological Administration, Beijing, China<p>Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from <span class="inline-formula">∼</span> 300 <span class="inline-formula">DU</span> in 1850 to <span class="inline-formula">∼</span> 305 <span class="inline-formula">DU</span> in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be <span class="inline-formula">∼</span> 10 <span class="inline-formula">DU</span> higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer–Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by <span class="inline-formula">∼</span> 0.5 <span class="inline-formula">ppmv</span> at 70 <span class="inline-formula">hPa</span>. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by <span class="inline-formula">∼</span> 0.5 <span class="inline-formula">ppmv</span> from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (<span class="inline-formula">∼</span> 2 <span class="inline-formula">ppmv</span>) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions.</p>https://acp.copernicus.org/articles/21/5015/2021/acp-21-5015-2021.pdf
spellingShingle J. Keeble
J. Keeble
B. Hassler
A. Banerjee
A. Banerjee
R. Checa-Garcia
G. Chiodo
G. Chiodo
S. Davis
V. Eyring
V. Eyring
P. T. Griffiths
P. T. Griffiths
O. Morgenstern
P. Nowack
P. Nowack
G. Zeng
J. Zhang
G. Bodeker
G. Bodeker
S. Burrows
P. Cameron-Smith
D. Cugnet
C. Danek
M. Deushi
L. W. Horowitz
A. Kubin
L. Li
G. Lohmann
M. Michou
M. J. Mills
P. Nabat
D. Olivié
S. Park
Ø. Seland
J. Stoll
K.-H. Wieners
T. Wu
Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
Atmospheric Chemistry and Physics
title Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
title_full Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
title_fullStr Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
title_full_unstemmed Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
title_short Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
title_sort evaluating stratospheric ozone and water vapour changes in cmip6 models from 1850 to 2100
url https://acp.copernicus.org/articles/21/5015/2021/acp-21-5015-2021.pdf
work_keys_str_mv AT jkeeble evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT jkeeble evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT bhassler evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT abanerjee evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT abanerjee evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT rchecagarcia evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT gchiodo evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT gchiodo evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT sdavis evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT veyring evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT veyring evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT ptgriffiths evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT ptgriffiths evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT omorgenstern evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT pnowack evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT pnowack evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT gzeng evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT jzhang evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT gbodeker evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT gbodeker evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT sburrows evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT pcameronsmith evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT dcugnet evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT cdanek evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT mdeushi evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT lwhorowitz evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT akubin evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT lli evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT glohmann evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT mmichou evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT mjmills evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT pnabat evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT dolivie evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT spark evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT øseland evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT jstoll evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT khwieners evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100
AT twu evaluatingstratosphericozoneandwatervapourchangesincmip6modelsfrom1850to2100