Benchmarking large language models’ performances for myopia care: a comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and Google BardResearch in context

Summary: Background: Large language models (LLMs) are garnering wide interest due to their human-like and contextually relevant responses. However, LLMs’ accuracy across specific medical domains has yet been thoroughly evaluated. Myopia is a frequent topic which patients and parents commonly seek i...

Full description

Bibliographic Details
Main Authors: Zhi Wei Lim, Krithi Pushpanathan, Samantha Min Er Yew, Yien Lai, Chen-Hsin Sun, Janice Sing Harn Lam, David Ziyou Chen, Jocelyn Hui Lin Goh, Marcus Chun Jin Tan, Bin Sheng, Ching-Yu Cheng, Victor Teck Chang Koh, Yih-Chung Tham
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:EBioMedicine
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352396423003365
Description
Summary:Summary: Background: Large language models (LLMs) are garnering wide interest due to their human-like and contextually relevant responses. However, LLMs’ accuracy across specific medical domains has yet been thoroughly evaluated. Myopia is a frequent topic which patients and parents commonly seek information online. Our study evaluated the performance of three LLMs namely ChatGPT-3.5, ChatGPT-4.0, and Google Bard, in delivering accurate responses to common myopia-related queries. Methods: We curated thirty-one commonly asked myopia care-related questions, which were categorised into six domains—pathogenesis, risk factors, clinical presentation, diagnosis, treatment and prevention, and prognosis. Each question was posed to the LLMs, and their responses were independently graded by three consultant-level paediatric ophthalmologists on a three-point accuracy scale (poor, borderline, good). A majority consensus approach was used to determine the final rating for each response. ‘Good’ rated responses were further evaluated for comprehensiveness on a five-point scale. Conversely, ‘poor’ rated responses were further prompted for self-correction and then re-evaluated for accuracy. Findings: ChatGPT-4.0 demonstrated superior accuracy, with 80.6% of responses rated as ‘good’, compared to 61.3% in ChatGPT-3.5 and 54.8% in Google Bard (Pearson's chi-squared test, all p ≤ 0.009). All three LLM-Chatbots showed high mean comprehensiveness scores (Google Bard: 4.35; ChatGPT-4.0: 4.23; ChatGPT-3.5: 4.11, out of a maximum score of 5). All LLM-Chatbots also demonstrated substantial self-correction capabilities: 66.7% (2 in 3) of ChatGPT-4.0's, 40% (2 in 5) of ChatGPT-3.5's, and 60% (3 in 5) of Google Bard's responses improved after self-correction. The LLM-Chatbots performed consistently across domains, except for ‘treatment and prevention’. However, ChatGPT-4.0 still performed superiorly in this domain, receiving 70% ‘good’ ratings, compared to 40% in ChatGPT-3.5 and 45% in Google Bard (Pearson's chi-squared test, all p ≤ 0.001). Interpretation: Our findings underscore the potential of LLMs, particularly ChatGPT-4.0, for delivering accurate and comprehensive responses to myopia-related queries. Continuous strategies and evaluations to improve LLMs’ accuracy remain crucial. Funding: Dr Yih-Chung Tham was supported by the National Medical Research Council of Singapore (NMRC/MOH/HCSAINV21nov-0001).
ISSN:2352-3964