Automatic Tempered Posterior Distributions for Bayesian Inversion Problems

We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the inference of the variables of interest and the power of the data noise are carried out using distinct (but interacting) methods. More specifically, we consider a Bayesian analysis for the variables of in...

Full description

Bibliographic Details
Main Authors: Luca Martino, Fernando Llorente, Ernesto Curbelo, Javier López-Santiago, Joaquín Míguez
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/7/784
_version_ 1797538779561459712
author Luca Martino
Fernando Llorente
Ernesto Curbelo
Javier López-Santiago
Joaquín Míguez
author_facet Luca Martino
Fernando Llorente
Ernesto Curbelo
Javier López-Santiago
Joaquín Míguez
author_sort Luca Martino
collection DOAJ
description We propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the inference of the variables of interest and the power of the data noise are carried out using distinct (but interacting) methods. More specifically, we consider a Bayesian analysis for the variables of interest (i.e., the parameters of the model to invert), whereas we employ a maximum likelihood approach for the estimation of the noise power. The whole technique is implemented by means of an iterative procedure with alternating sampling and optimization steps. Moreover, the noise power is also used as a tempered parameter for the posterior distribution of the the variables of interest. Therefore, a sequence of tempered posterior densities is generated, where the tempered parameter is automatically selected according to the current estimate of the noise power. A complete Bayesian study over the model parameters and the scale parameter can also be performed. Numerical experiments show the benefits of the proposed approach.
first_indexed 2024-03-10T12:36:16Z
format Article
id doaj.art-ef6da7b9362d428ea680690301bfe504
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T12:36:16Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-ef6da7b9362d428ea680690301bfe5042023-11-21T14:18:26ZengMDPI AGMathematics2227-73902021-04-019778410.3390/math9070784Automatic Tempered Posterior Distributions for Bayesian Inversion ProblemsLuca Martino0Fernando Llorente1Ernesto Curbelo2Javier López-Santiago3Joaquín Míguez4Department of Signal Processing, Universidad rey Juan Carlos (URJC), 28942 Madrid, SpainDepartment of Statistics, Universidad Carlos III de Madrid (UC3M), 28911 Madrid, SpainDepartment of Statistics, Universidad Carlos III de Madrid (UC3M), 28911 Madrid, SpainDepartment of Signal Processing, Universidad Carlos III de Madrid (UC3M), 28911 Madrid, SpainDepartment of Signal Processing, Universidad Carlos III de Madrid (UC3M), 28911 Madrid, SpainWe propose a novel adaptive importance sampling scheme for Bayesian inversion problems where the inference of the variables of interest and the power of the data noise are carried out using distinct (but interacting) methods. More specifically, we consider a Bayesian analysis for the variables of interest (i.e., the parameters of the model to invert), whereas we employ a maximum likelihood approach for the estimation of the noise power. The whole technique is implemented by means of an iterative procedure with alternating sampling and optimization steps. Moreover, the noise power is also used as a tempered parameter for the posterior distribution of the the variables of interest. Therefore, a sequence of tempered posterior densities is generated, where the tempered parameter is automatically selected according to the current estimate of the noise power. A complete Bayesian study over the model parameters and the scale parameter can also be performed. Numerical experiments show the benefits of the proposed approach.https://www.mdpi.com/2227-7390/9/7/784Bayesian inferenceimportance samplingMCMCinversion problems
spellingShingle Luca Martino
Fernando Llorente
Ernesto Curbelo
Javier López-Santiago
Joaquín Míguez
Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
Mathematics
Bayesian inference
importance sampling
MCMC
inversion problems
title Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
title_full Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
title_fullStr Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
title_full_unstemmed Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
title_short Automatic Tempered Posterior Distributions for Bayesian Inversion Problems
title_sort automatic tempered posterior distributions for bayesian inversion problems
topic Bayesian inference
importance sampling
MCMC
inversion problems
url https://www.mdpi.com/2227-7390/9/7/784
work_keys_str_mv AT lucamartino automatictemperedposteriordistributionsforbayesianinversionproblems
AT fernandollorente automatictemperedposteriordistributionsforbayesianinversionproblems
AT ernestocurbelo automatictemperedposteriordistributionsforbayesianinversionproblems
AT javierlopezsantiago automatictemperedposteriordistributionsforbayesianinversionproblems
AT joaquinmiguez automatictemperedposteriordistributionsforbayesianinversionproblems