Some Fine Properties of BV Functions on Wiener Spaces

In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a cha...

Full description

Bibliographic Details
Main Authors: Ambrosio Luigi, Miranda Jr. Michele, Pallara Diego
Format: Article
Language:English
Published: De Gruyter 2015-08-01
Series:Analysis and Geometry in Metric Spaces
Subjects:
Online Access:https://doi.org/10.1515/agms-2015-0013
_version_ 1819131882771578880
author Ambrosio Luigi
Miranda Jr. Michele
Pallara Diego
author_facet Ambrosio Luigi
Miranda Jr. Michele
Pallara Diego
author_sort Ambrosio Luigi
collection DOAJ
description In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
first_indexed 2024-12-22T09:22:34Z
format Article
id doaj.art-ef7c6d4b200845a9b3cfbcce7af8c3b6
institution Directory Open Access Journal
issn 2299-3274
language English
last_indexed 2024-12-22T09:22:34Z
publishDate 2015-08-01
publisher De Gruyter
record_format Article
series Analysis and Geometry in Metric Spaces
spelling doaj.art-ef7c6d4b200845a9b3cfbcce7af8c3b62022-12-21T18:31:10ZengDe GruyterAnalysis and Geometry in Metric Spaces2299-32742015-08-013110.1515/agms-2015-0013agms-2015-0013Some Fine Properties of BV Functions on Wiener SpacesAmbrosio Luigi0Miranda Jr. Michele1Pallara Diego2Scuola Normale Superiore Piazza dei Cavalieri,7, 56126 Pisa, ItalyDip. di Matematica e Informatica, Università di Ferrara, via Machiavelli 30, 44121 Ferrara, ItalyDip. di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, P.O.B. 193, 73100 Lecce, ItalyIn this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.https://doi.org/10.1515/agms-2015-0013wiener spacefunctions of bounded variationprimary: 58e 26e15secondary: 28c20 60h07
spellingShingle Ambrosio Luigi
Miranda Jr. Michele
Pallara Diego
Some Fine Properties of BV Functions on Wiener Spaces
Analysis and Geometry in Metric Spaces
wiener space
functions of bounded variation
primary: 58e
26e15
secondary: 28c20
60h07
title Some Fine Properties of BV Functions on Wiener Spaces
title_full Some Fine Properties of BV Functions on Wiener Spaces
title_fullStr Some Fine Properties of BV Functions on Wiener Spaces
title_full_unstemmed Some Fine Properties of BV Functions on Wiener Spaces
title_short Some Fine Properties of BV Functions on Wiener Spaces
title_sort some fine properties of bv functions on wiener spaces
topic wiener space
functions of bounded variation
primary: 58e
26e15
secondary: 28c20
60h07
url https://doi.org/10.1515/agms-2015-0013
work_keys_str_mv AT ambrosioluigi somefinepropertiesofbvfunctionsonwienerspaces
AT mirandajrmichele somefinepropertiesofbvfunctionsonwienerspaces
AT pallaradiego somefinepropertiesofbvfunctionsonwienerspaces