Fractional-Order Modeling of Piezoelectric Actuators with Coupled Hysteresis and Creep Effects

A novel fractional-order model, incorporating coupled hysteresis and creep effects, is proposed for typical piezoelectric actuators in this study. Throughout the actuation process, various nonlinear behaviors such as piezoelectric hysteresis, non-local memory, peak transition, and creep nonlinearity...

Full description

Bibliographic Details
Main Authors: Yifan Xu, Ying Luo, Xin Luo, Yangquan Chen, Wei Liu
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/1/3
Description
Summary:A novel fractional-order model, incorporating coupled hysteresis and creep effects, is proposed for typical piezoelectric actuators in this study. Throughout the actuation process, various nonlinear behaviors such as piezoelectric hysteresis, non-local memory, peak transition, and creep nonlinearity are accurately characterized by the model. Offering a simpler structure and superior tracking performance compared to conventional models, the proposed fractional-order model parameters are identified using a method that integrates actuator dynamics and employs the particle swarm optimization algorithm. Experimental validation on a piezoelectric actuation platform confirms the model’s superior accuracy and simplified structure, contributing to a deeper understanding of piezoelectric actuation mechanisms and providing an efficient modeling tool for enhanced system performance.
ISSN:2504-3110