Bifurcation analysis for a delayed food chain system with two functional responses

A delayed three-species food chain system with two types of functional response, Holling type and Beddington-DeAngelis type, is investigated. By analyzing the distribution of the roots of the associated characteristic equation, we get the sufficient conditions for the stability of the positive equil...

Full description

Bibliographic Details
Main Authors: Zizhen Zhang, Huizhong Yang, Juan Liu
Format: Article
Language:English
Published: University of Szeged 2013-09-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2357
Description
Summary:A delayed three-species food chain system with two types of functional response, Holling type and Beddington-DeAngelis type, is investigated. By analyzing the distribution of the roots of the associated characteristic equation, we get the sufficient conditions for the stability of the positive equilibrium and the existence of Hopf bifurcation. In particular, using the normal form theory and center manifold theorem, the properties of Hopf bifurcation such as direction and stability are determined. Finally, numerical simulations are given to substantiate the theoretical results.
ISSN:1417-3875