On Laplacian resolvent energy of graphs

Let $G$ be a simple connected graph of order $n$ and size $m$. The matrix $L(G)=D(G)-A(G)$ is the Laplacian matrix of $G$, where $D(G)$ and $A(G)$ are the degree diagonal matrix and the adjacency matrix, respectively. For the graph $G$, let $d_{1}\geq d_{2}\geq \cdots d_{n}$ be the vertex degree seq...

Full description

Bibliographic Details
Main Authors: Sandeep Bhatnagar, Siddiqui Merajuddin, Shariefuddin Pirzada
Format: Article
Language:English
Published: University of Isfahan 2023-12-01
Series:Transactions on Combinatorics
Subjects:
Online Access:https://toc.ui.ac.ir/article_26922_3f840846eddc3ba6b2d0c4a558b29495.pdf
Description
Summary:Let $G$ be a simple connected graph of order $n$ and size $m$. The matrix $L(G)=D(G)-A(G)$ is the Laplacian matrix of $G$, where $D(G)$ and $A(G)$ are the degree diagonal matrix and the adjacency matrix, respectively. For the graph $G$, let $d_{1}\geq d_{2}\geq \cdots d_{n}$ be the vertex degree sequence and $\mu_{1}\geq \mu_{2}\geq \cdots \geq \mu_{n-1}>\mu_{n}=0$ be the Laplacian eigenvalues. The Laplacian resolvent energy $RL(G)$ of a graph $G$ is defined as $RL(G)=\sum\limits_{i=1}^{n}\frac{1}{n+1-\mu_{i}}$. In this paper, we obtain an upper bound for the Laplacian resolvent energy $RL(G)$ in terms of the order, size and the algebraic connectivity of the graph. Further, we establish relations between the Laplacian resolvent energy $RL(G)$ with each of the Laplacian-energy-Like invariant $LEL$, the Kirchhoff index $Kf$ and the Laplacian energy $LE$ of the graph.
ISSN:2251-8657
2251-8665