Equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector

Abstract Nuclear radiation detectors are indispensable for research in the field of nuclear radiation, X-ray spectroscopy and other areas. Interest in silicon p–i–n detectors of nuclear radiation is increasing today due to the possibility of their operation under normal conditions. In this paper, an...

Full description

Bibliographic Details
Main Authors: Ahmet Saymbetov, Ramizulla Muminov, Zhang Jing, Madiyar Nurgaliyev, Nursultan Japashov, Yorkin Toshmurodov, Nurzhigit Kuttybay, Ainur Kapparova, Batyrbek Zholamanov, Sayat Orynbassar, Nursultan Koshkarbay
Format: Article
Language:English
Published: Nature Portfolio 2023-08-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-39710-5
_version_ 1797752805763579904
author Ahmet Saymbetov
Ramizulla Muminov
Zhang Jing
Madiyar Nurgaliyev
Nursultan Japashov
Yorkin Toshmurodov
Nurzhigit Kuttybay
Ainur Kapparova
Batyrbek Zholamanov
Sayat Orynbassar
Nursultan Koshkarbay
author_facet Ahmet Saymbetov
Ramizulla Muminov
Zhang Jing
Madiyar Nurgaliyev
Nursultan Japashov
Yorkin Toshmurodov
Nurzhigit Kuttybay
Ainur Kapparova
Batyrbek Zholamanov
Sayat Orynbassar
Nursultan Koshkarbay
author_sort Ahmet Saymbetov
collection DOAJ
description Abstract Nuclear radiation detectors are indispensable for research in the field of nuclear radiation, X-ray spectroscopy and other areas. Interest in silicon p–i–n detectors of nuclear radiation is increasing today due to the possibility of their operation under normal conditions. In this paper, an equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector is proposed. The proposed circuit is obtained using the classical Shockley equation for silicon semiconductors and the telegraph equations. The parameters of the equivalent circuit were determined using the multiple regression method. As a result of simulation of the model in the MATLAB Simulink graphical development environment, the amplitude-frequency and phase-frequency characteristics of the proposed model were obtained. Using the Monte Carlo method, the alpha-decay of the uranium isotope $${}_{92}{}^{233}\mathrm{U}$$ 92 233 U , thorium isotope $${}_{90}{}^{227}\mathrm{Th}$$ 90 227 Th and americium isotope $${}_{95}{}^{241}\mathrm{Am}$$ 95 241 Am the alpha-decay spectrum was obtained. Obtained alpha-decay spectra coincides with the experimental data, presented in previous works of other authors.
first_indexed 2024-03-12T17:09:47Z
format Article
id doaj.art-ef9f3efdceb2465f92fc9cace960d02f
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-03-12T17:09:47Z
publishDate 2023-08-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-ef9f3efdceb2465f92fc9cace960d02f2023-08-06T11:12:34ZengNature PortfolioScientific Reports2045-23222023-08-0113111110.1038/s41598-023-39710-5Equivalent circuit of a silicon–lithium p–i–n nuclear radiation detectorAhmet Saymbetov0Ramizulla Muminov1Zhang Jing2Madiyar Nurgaliyev3Nursultan Japashov4Yorkin Toshmurodov5Nurzhigit Kuttybay6Ainur Kapparova7Batyrbek Zholamanov8Sayat Orynbassar9Nursultan Koshkarbay10Al-Farabi Kazakh National UniversityPhysical-Technical Institute, Uzbekistan Academy of SciencesAl-Farabi Kazakh National UniversityAl-Farabi Kazakh National UniversityAl-Farabi Kazakh National UniversityTashkent Institute of Irrigation and Agricultural Mechanization EngineersAl-Farabi Kazakh National UniversityAl-Farabi Kazakh National UniversityAl-Farabi Kazakh National UniversityAl-Farabi Kazakh National UniversityAl-Farabi Kazakh National UniversityAbstract Nuclear radiation detectors are indispensable for research in the field of nuclear radiation, X-ray spectroscopy and other areas. Interest in silicon p–i–n detectors of nuclear radiation is increasing today due to the possibility of their operation under normal conditions. In this paper, an equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector is proposed. The proposed circuit is obtained using the classical Shockley equation for silicon semiconductors and the telegraph equations. The parameters of the equivalent circuit were determined using the multiple regression method. As a result of simulation of the model in the MATLAB Simulink graphical development environment, the amplitude-frequency and phase-frequency characteristics of the proposed model were obtained. Using the Monte Carlo method, the alpha-decay of the uranium isotope $${}_{92}{}^{233}\mathrm{U}$$ 92 233 U , thorium isotope $${}_{90}{}^{227}\mathrm{Th}$$ 90 227 Th and americium isotope $${}_{95}{}^{241}\mathrm{Am}$$ 95 241 Am the alpha-decay spectrum was obtained. Obtained alpha-decay spectra coincides with the experimental data, presented in previous works of other authors.https://doi.org/10.1038/s41598-023-39710-5
spellingShingle Ahmet Saymbetov
Ramizulla Muminov
Zhang Jing
Madiyar Nurgaliyev
Nursultan Japashov
Yorkin Toshmurodov
Nurzhigit Kuttybay
Ainur Kapparova
Batyrbek Zholamanov
Sayat Orynbassar
Nursultan Koshkarbay
Equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector
Scientific Reports
title Equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector
title_full Equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector
title_fullStr Equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector
title_full_unstemmed Equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector
title_short Equivalent circuit of a silicon–lithium p–i–n nuclear radiation detector
title_sort equivalent circuit of a silicon lithium p i n nuclear radiation detector
url https://doi.org/10.1038/s41598-023-39710-5
work_keys_str_mv AT ahmetsaymbetov equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT ramizullamuminov equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT zhangjing equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT madiyarnurgaliyev equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT nursultanjapashov equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT yorkintoshmurodov equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT nurzhigitkuttybay equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT ainurkapparova equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT batyrbekzholamanov equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT sayatorynbassar equivalentcircuitofasiliconlithiumpinnuclearradiationdetector
AT nursultankoshkarbay equivalentcircuitofasiliconlithiumpinnuclearradiationdetector