Bottomonium production and polarization in the NRQCD with $$k_T$$ k T -factorization. III: $$\Upsilon (1S)$$ Υ ( 1 S ) and $$\chi _b(1P)$$ χ b ( 1 P ) mesons
Abstract The $$\Upsilon (1S)$$ Υ ( 1 S ) meson production and polarization at high energies is studied in the framework of the $$k_T$$ k T -factorization approach. Our consideration is based on the non-relativistic QCD formalism for a bound states formation and off-shell production amplitudes for ha...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-12-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-021-09880-5 |
Summary: | Abstract The $$\Upsilon (1S)$$ Υ ( 1 S ) meson production and polarization at high energies is studied in the framework of the $$k_T$$ k T -factorization approach. Our consideration is based on the non-relativistic QCD formalism for a bound states formation and off-shell production amplitudes for hard partonic subprocesses. The direct production mechanism, feed-down contributions from radiative $$\chi _b(mP)$$ χ b ( m P ) decays and contributions from $$\Upsilon (3S)$$ Υ ( 3 S ) and $$\Upsilon (2S)$$ Υ ( 2 S ) decays are taken into account. The transverse momentum dependent (TMD) gluon densities in a proton were derived from the Ciafaloni–Catani–Fiorani–Marchesini evolution equation and the Kimber-Martin–Ryskin prescription. Treating the non-perturbative color octet transitions in terms of multipole radiation theory, we extract the corresponding non-perturbative matrix elements for $$\Upsilon (1S)$$ Υ ( 1 S ) and $$\chi _b(1P)$$ χ b ( 1 P ) mesons from a combined fit to transverse momenta distributions measured at various LHC experiments. Then we apply the extracted values to investigate the polarization parameters $$\lambda _\theta $$ λ θ , $$\lambda _\phi $$ λ ϕ and $$\lambda _{\theta \phi }$$ λ θ ϕ , which determine the $$\Upsilon (1S)$$ Υ ( 1 S ) spin density matrix. Our predictions have a reasonably good agreement with the currently available Tevatron and LHC data within the theoretical and experimental uncertainties. |
---|---|
ISSN: | 1434-6044 1434-6052 |