Hardy Inequalities and Interrelations of Fractional Triebel–Lizorkin Spaces in a Bounded Uniform Domain

The interrelations of Triebel–Lizorkin spaces on smooth domains of Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n<...

Full description

Bibliographic Details
Main Authors: Jun Cao, Yongyang Jin, Yuanyuan Li, Qishun Zhang
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/4/637
_version_ 1797478373695422464
author Jun Cao
Yongyang Jin
Yuanyuan Li
Qishun Zhang
author_facet Jun Cao
Yongyang Jin
Yuanyuan Li
Qishun Zhang
author_sort Jun Cao
collection DOAJ
description The interrelations of Triebel–Lizorkin spaces on smooth domains of Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> are well-established, whereas only partial results are known for the non-smooth domains. In this paper, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is a non-smooth domain of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> that is bounded and uniform. Suppose <i>p</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mo stretchy="false">(</mo><mi>n</mi><msub><mrow><mo stretchy="false">(</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>−</mo><mfrac><mn>1</mn><mi>q</mi></mfrac><mo stretchy="false">)</mo></mrow><mo>+</mo></msub><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><msub><mrow><mo stretchy="false">(</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>−</mo><mfrac><mn>1</mn><mi>q</mi></mfrac><mo stretchy="false">)</mo></mrow><mo>+</mo></msub><mo>:</mo><mo>=</mo><mo movablelimits="true" form="prefix">max</mo><mrow><mo stretchy="false">{</mo><mi>n</mi><mrow><mo stretchy="false">(</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>−</mo><mfrac><mn>1</mn><mi>q</mi></mfrac><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn><mo stretchy="false">}</mo></mrow></mrow></semantics></math></inline-formula>. The authors show that three typical types of fractional Triebel–Lizorkin spaces, on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>F</mi><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mover accent="true"><mi>F</mi><mo>˚</mo></mover><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mover accent="true"><mi>F</mi><mo>˜</mo></mover><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, defined via the restriction, completion and supporting conditions, respectively, are identical if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is E-thick and supports some Hardy inequalities. Moreover, the authors show the condition that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is E-thick can be removed when considering only the density property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>F</mi><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow><mo>=</mo><msubsup><mover accent="true"><mi>F</mi><mo>˚</mo></mover><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, and the condition that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> supports Hardy inequalities can be characterized by some Triebel–Lizorkin capacities in the special case of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T21:30:59Z
format Article
id doaj.art-efaf66c9fd4f4c82989edea7bdbc50cd
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T21:30:59Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-efaf66c9fd4f4c82989edea7bdbc50cd2023-11-23T20:57:51ZengMDPI AGMathematics2227-73902022-02-0110463710.3390/math10040637Hardy Inequalities and Interrelations of Fractional Triebel–Lizorkin Spaces in a Bounded Uniform DomainJun Cao0Yongyang Jin1Yuanyuan Li2Qishun Zhang3Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, ChinaDepartment of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, ChinaDepartment of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, ChinaDepartment of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, ChinaThe interrelations of Triebel–Lizorkin spaces on smooth domains of Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> are well-established, whereas only partial results are known for the non-smooth domains. In this paper, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is a non-smooth domain of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula> that is bounded and uniform. Suppose <i>p</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>∈</mo><mo stretchy="false">(</mo><mi>n</mi><msub><mrow><mo stretchy="false">(</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>−</mo><mfrac><mn>1</mn><mi>q</mi></mfrac><mo stretchy="false">)</mo></mrow><mo>+</mo></msub><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><msub><mrow><mo stretchy="false">(</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>−</mo><mfrac><mn>1</mn><mi>q</mi></mfrac><mo stretchy="false">)</mo></mrow><mo>+</mo></msub><mo>:</mo><mo>=</mo><mo movablelimits="true" form="prefix">max</mo><mrow><mo stretchy="false">{</mo><mi>n</mi><mrow><mo stretchy="false">(</mo><mfrac><mn>1</mn><mi>p</mi></mfrac><mo>−</mo><mfrac><mn>1</mn><mi>q</mi></mfrac><mo stretchy="false">)</mo></mrow><mo>,</mo><mn>0</mn><mo stretchy="false">}</mo></mrow></mrow></semantics></math></inline-formula>. The authors show that three typical types of fractional Triebel–Lizorkin spaces, on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula>: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>F</mi><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mover accent="true"><mi>F</mi><mo>˚</mo></mover><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mover accent="true"><mi>F</mi><mo>˜</mo></mover><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, defined via the restriction, completion and supporting conditions, respectively, are identical if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is E-thick and supports some Hardy inequalities. Moreover, the authors show the condition that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is E-thick can be removed when considering only the density property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>F</mi><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow><mo>=</mo><msubsup><mover accent="true"><mi>F</mi><mo>˚</mo></mover><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow><mi>s</mi></msubsup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, and the condition that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> supports Hardy inequalities can be characterized by some Triebel–Lizorkin capacities in the special case of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/10/4/637Triebel–Lizorkin spaceHardy inequalityuniform domainfractional Laplacian
spellingShingle Jun Cao
Yongyang Jin
Yuanyuan Li
Qishun Zhang
Hardy Inequalities and Interrelations of Fractional Triebel–Lizorkin Spaces in a Bounded Uniform Domain
Mathematics
Triebel–Lizorkin space
Hardy inequality
uniform domain
fractional Laplacian
title Hardy Inequalities and Interrelations of Fractional Triebel–Lizorkin Spaces in a Bounded Uniform Domain
title_full Hardy Inequalities and Interrelations of Fractional Triebel–Lizorkin Spaces in a Bounded Uniform Domain
title_fullStr Hardy Inequalities and Interrelations of Fractional Triebel–Lizorkin Spaces in a Bounded Uniform Domain
title_full_unstemmed Hardy Inequalities and Interrelations of Fractional Triebel–Lizorkin Spaces in a Bounded Uniform Domain
title_short Hardy Inequalities and Interrelations of Fractional Triebel–Lizorkin Spaces in a Bounded Uniform Domain
title_sort hardy inequalities and interrelations of fractional triebel lizorkin spaces in a bounded uniform domain
topic Triebel–Lizorkin space
Hardy inequality
uniform domain
fractional Laplacian
url https://www.mdpi.com/2227-7390/10/4/637
work_keys_str_mv AT juncao hardyinequalitiesandinterrelationsoffractionaltriebellizorkinspacesinaboundeduniformdomain
AT yongyangjin hardyinequalitiesandinterrelationsoffractionaltriebellizorkinspacesinaboundeduniformdomain
AT yuanyuanli hardyinequalitiesandinterrelationsoffractionaltriebellizorkinspacesinaboundeduniformdomain
AT qishunzhang hardyinequalitiesandinterrelationsoffractionaltriebellizorkinspacesinaboundeduniformdomain