Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations
A novel analysis of the electromagnetohydrodynamic (EMHD) non-Newtonian nanofluid blood flow incorporating CuO and Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2<...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/13/4/652 |
_version_ | 1827756176888037376 |
---|---|
author | Rishu Gandhi Bhupendra Kumar Sharma Nidhish Kumar Mishra Qasem M. Al-Mdallal |
author_facet | Rishu Gandhi Bhupendra Kumar Sharma Nidhish Kumar Mishra Qasem M. Al-Mdallal |
author_sort | Rishu Gandhi |
collection | DOAJ |
description | A novel analysis of the electromagnetohydrodynamic (EMHD) non-Newtonian nanofluid blood flow incorporating CuO and Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanoparticles through a permeable walled diseased artery having irregular stenosis and an aneurysm is analyzed in this paper. The non-Newtonian behavior of blood flow is addressed by the Casson fluid model. The effective viscosity and thermal conductivity of nanofluids are calculated using the Koo-Kleinstreuer-Li model, which takes into account the Brownian motion of nanoparticles. The mild stenosis approximation is employed to reduce the bi-directional flow of blood to uni-directional. The blood flow is influenced by an electric field along with a magnetic field perpendicular to the blood flow. The governing mathematical equations are solved using Crank-Nicolson finite difference approach. The model has been developed and validated by comparing the current results to previously published benchmarks that are peculiar to this study. The results are utilized to investigate the impact of physical factors on momentum diffusion and heat transfer. The Nusselt number escalates with increasing CuO nanoparticle diameter and diminishing the diameter of Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanoparticles. The relative % variation in Nusselt number enhances with Magnetic number, whereas a declining trend is obtained for the electric field parameter. The present study’s findings may be helpful in the diagnosis of hemodynamic abnormalities and the fields of nano-hemodynamics, nano-pharmacology, drug delivery, tissue regeneration, wound healing, and blood purification systems. |
first_indexed | 2024-03-11T08:20:23Z |
format | Article |
id | doaj.art-efb62ee548014019af9d747fab171bb9 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-11T08:20:23Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-efb62ee548014019af9d747fab171bb92023-11-16T22:27:05ZengMDPI AGNanomaterials2079-49912023-02-0113465210.3390/nano13040652Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li CorrelationsRishu Gandhi0Bhupendra Kumar Sharma1Nidhish Kumar Mishra2Qasem M. Al-Mdallal3Department of Mathematics, Birla Institute of Technology and Science, Pilani 333031, IndiaDepartment of Mathematics, Birla Institute of Technology and Science, Pilani 333031, IndiaDepartment of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi ArabiaDepartment of Mathematical Sciences, College of Science, UAE University, Al-Ain P.O. Box 17551, United Arab EmiratesA novel analysis of the electromagnetohydrodynamic (EMHD) non-Newtonian nanofluid blood flow incorporating CuO and Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanoparticles through a permeable walled diseased artery having irregular stenosis and an aneurysm is analyzed in this paper. The non-Newtonian behavior of blood flow is addressed by the Casson fluid model. The effective viscosity and thermal conductivity of nanofluids are calculated using the Koo-Kleinstreuer-Li model, which takes into account the Brownian motion of nanoparticles. The mild stenosis approximation is employed to reduce the bi-directional flow of blood to uni-directional. The blood flow is influenced by an electric field along with a magnetic field perpendicular to the blood flow. The governing mathematical equations are solved using Crank-Nicolson finite difference approach. The model has been developed and validated by comparing the current results to previously published benchmarks that are peculiar to this study. The results are utilized to investigate the impact of physical factors on momentum diffusion and heat transfer. The Nusselt number escalates with increasing CuO nanoparticle diameter and diminishing the diameter of Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanoparticles. The relative % variation in Nusselt number enhances with Magnetic number, whereas a declining trend is obtained for the electric field parameter. The present study’s findings may be helpful in the diagnosis of hemodynamic abnormalities and the fields of nano-hemodynamics, nano-pharmacology, drug delivery, tissue regeneration, wound healing, and blood purification systems.https://www.mdpi.com/2079-4991/13/4/652KKL correlationsCasson fluidstenosis and aneursymnanoparticlesradiation |
spellingShingle | Rishu Gandhi Bhupendra Kumar Sharma Nidhish Kumar Mishra Qasem M. Al-Mdallal Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations Nanomaterials KKL correlations Casson fluid stenosis and aneursym nanoparticles radiation |
title | Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations |
title_full | Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations |
title_fullStr | Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations |
title_full_unstemmed | Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations |
title_short | Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations |
title_sort | computer simulations of emhd casson nanofluid flow of blood through an irregular stenotic permeable artery application of koo kleinstreuer li correlations |
topic | KKL correlations Casson fluid stenosis and aneursym nanoparticles radiation |
url | https://www.mdpi.com/2079-4991/13/4/652 |
work_keys_str_mv | AT rishugandhi computersimulationsofemhdcassonnanofluidflowofbloodthroughanirregularstenoticpermeablearteryapplicationofkookleinstreuerlicorrelations AT bhupendrakumarsharma computersimulationsofemhdcassonnanofluidflowofbloodthroughanirregularstenoticpermeablearteryapplicationofkookleinstreuerlicorrelations AT nidhishkumarmishra computersimulationsofemhdcassonnanofluidflowofbloodthroughanirregularstenoticpermeablearteryapplicationofkookleinstreuerlicorrelations AT qasemmalmdallal computersimulationsofemhdcassonnanofluidflowofbloodthroughanirregularstenoticpermeablearteryapplicationofkookleinstreuerlicorrelations |