Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations

A novel analysis of the electromagnetohydrodynamic (EMHD) non-Newtonian nanofluid blood flow incorporating CuO and Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2<...

Full description

Bibliographic Details
Main Authors: Rishu Gandhi, Bhupendra Kumar Sharma, Nidhish Kumar Mishra, Qasem M. Al-Mdallal
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/13/4/652
_version_ 1827756176888037376
author Rishu Gandhi
Bhupendra Kumar Sharma
Nidhish Kumar Mishra
Qasem M. Al-Mdallal
author_facet Rishu Gandhi
Bhupendra Kumar Sharma
Nidhish Kumar Mishra
Qasem M. Al-Mdallal
author_sort Rishu Gandhi
collection DOAJ
description A novel analysis of the electromagnetohydrodynamic (EMHD) non-Newtonian nanofluid blood flow incorporating CuO and Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanoparticles through a permeable walled diseased artery having irregular stenosis and an aneurysm is analyzed in this paper. The non-Newtonian behavior of blood flow is addressed by the Casson fluid model. The effective viscosity and thermal conductivity of nanofluids are calculated using the Koo-Kleinstreuer-Li model, which takes into account the Brownian motion of nanoparticles. The mild stenosis approximation is employed to reduce the bi-directional flow of blood to uni-directional. The blood flow is influenced by an electric field along with a magnetic field perpendicular to the blood flow. The governing mathematical equations are solved using Crank-Nicolson finite difference approach. The model has been developed and validated by comparing the current results to previously published benchmarks that are peculiar to this study. The results are utilized to investigate the impact of physical factors on momentum diffusion and heat transfer. The Nusselt number escalates with increasing CuO nanoparticle diameter and diminishing the diameter of Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanoparticles. The relative % variation in Nusselt number enhances with Magnetic number, whereas a declining trend is obtained for the electric field parameter. The present study’s findings may be helpful in the diagnosis of hemodynamic abnormalities and the fields of nano-hemodynamics, nano-pharmacology, drug delivery, tissue regeneration, wound healing, and blood purification systems.
first_indexed 2024-03-11T08:20:23Z
format Article
id doaj.art-efb62ee548014019af9d747fab171bb9
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-11T08:20:23Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-efb62ee548014019af9d747fab171bb92023-11-16T22:27:05ZengMDPI AGNanomaterials2079-49912023-02-0113465210.3390/nano13040652Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li CorrelationsRishu Gandhi0Bhupendra Kumar Sharma1Nidhish Kumar Mishra2Qasem M. Al-Mdallal3Department of Mathematics, Birla Institute of Technology and Science, Pilani 333031, IndiaDepartment of Mathematics, Birla Institute of Technology and Science, Pilani 333031, IndiaDepartment of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi ArabiaDepartment of Mathematical Sciences, College of Science, UAE University, Al-Ain P.O. Box 17551, United Arab EmiratesA novel analysis of the electromagnetohydrodynamic (EMHD) non-Newtonian nanofluid blood flow incorporating CuO and Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanoparticles through a permeable walled diseased artery having irregular stenosis and an aneurysm is analyzed in this paper. The non-Newtonian behavior of blood flow is addressed by the Casson fluid model. The effective viscosity and thermal conductivity of nanofluids are calculated using the Koo-Kleinstreuer-Li model, which takes into account the Brownian motion of nanoparticles. The mild stenosis approximation is employed to reduce the bi-directional flow of blood to uni-directional. The blood flow is influenced by an electric field along with a magnetic field perpendicular to the blood flow. The governing mathematical equations are solved using Crank-Nicolson finite difference approach. The model has been developed and validated by comparing the current results to previously published benchmarks that are peculiar to this study. The results are utilized to investigate the impact of physical factors on momentum diffusion and heat transfer. The Nusselt number escalates with increasing CuO nanoparticle diameter and diminishing the diameter of Al<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> nanoparticles. The relative % variation in Nusselt number enhances with Magnetic number, whereas a declining trend is obtained for the electric field parameter. The present study’s findings may be helpful in the diagnosis of hemodynamic abnormalities and the fields of nano-hemodynamics, nano-pharmacology, drug delivery, tissue regeneration, wound healing, and blood purification systems.https://www.mdpi.com/2079-4991/13/4/652KKL correlationsCasson fluidstenosis and aneursymnanoparticlesradiation
spellingShingle Rishu Gandhi
Bhupendra Kumar Sharma
Nidhish Kumar Mishra
Qasem M. Al-Mdallal
Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations
Nanomaterials
KKL correlations
Casson fluid
stenosis and aneursym
nanoparticles
radiation
title Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations
title_full Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations
title_fullStr Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations
title_full_unstemmed Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations
title_short Computer Simulations of EMHD Casson Nanofluid Flow of Blood through an Irregular Stenotic Permeable Artery: Application of Koo-Kleinstreuer-Li Correlations
title_sort computer simulations of emhd casson nanofluid flow of blood through an irregular stenotic permeable artery application of koo kleinstreuer li correlations
topic KKL correlations
Casson fluid
stenosis and aneursym
nanoparticles
radiation
url https://www.mdpi.com/2079-4991/13/4/652
work_keys_str_mv AT rishugandhi computersimulationsofemhdcassonnanofluidflowofbloodthroughanirregularstenoticpermeablearteryapplicationofkookleinstreuerlicorrelations
AT bhupendrakumarsharma computersimulationsofemhdcassonnanofluidflowofbloodthroughanirregularstenoticpermeablearteryapplicationofkookleinstreuerlicorrelations
AT nidhishkumarmishra computersimulationsofemhdcassonnanofluidflowofbloodthroughanirregularstenoticpermeablearteryapplicationofkookleinstreuerlicorrelations
AT qasemmalmdallal computersimulationsofemhdcassonnanofluidflowofbloodthroughanirregularstenoticpermeablearteryapplicationofkookleinstreuerlicorrelations