On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide
An on-line multi-frequency electrical resistance tomography (<i>mf</i>ERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of pla...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/3/1025 |
_version_ | 1797484711066468352 |
---|---|
author | Prima Asmara Sejati Noritaka Saito Yosephus Ardean Kurnianto Prayitno Koji Tanaka Panji Nursetia Darma Miku Arisato Kunihiko Nakashima Masahiro Takei |
author_facet | Prima Asmara Sejati Noritaka Saito Yosephus Ardean Kurnianto Prayitno Koji Tanaka Panji Nursetia Darma Miku Arisato Kunihiko Nakashima Masahiro Takei |
author_sort | Prima Asmara Sejati |
collection | DOAJ |
description | An on-line multi-frequency electrical resistance tomography (<i>mf</i>ERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of platinum-rhodium (Pt-20mass%Rh) alloy covered by non-conductive aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) to prevent an electrical short. The noise reduction hardware has been designed by two approaches: (1) total harmonic distortion (THD) for the robust multiplexer, and (2) a current injection frequency pair: low <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></semantics></math></inline-formula> and high <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup></mrow></semantics></math></inline-formula>, for thermal noise compensation. THD is determined by a percentage evaluation of <i>k-</i>th harmonic distortions of ZnO at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>f</mi><mo>=</mo><mn>0</mn></mrow></mrow></semantics></math></inline-formula>.1~10,000 Hz. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup></mrow></semantics></math></inline-formula> are determined by the thermal noise behavior estimation at different temperatures. At <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mi>f</mi><mo> </mo></mrow><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>00 Hz, the THD percentage is relatively high and fluctuates; otherwise, THD dramatically declines, nearly reaching zero. At the determined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup><mo>≥</mo></mrow></semantics></math></inline-formula> 10,000 Hz and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup><mo>≈</mo></mrow></semantics></math></inline-formula> 1,000,000 Hz, thermal noise is significantly compensated. The on-line <i>mf</i>ERT was tested in the experiments of a non-conductive Al<sub>2</sub>O<sub>3</sub> rod dipped into conductive molten zinc-borate (60ZnO-40B<sub>2</sub>O<sub>3</sub>) at 1000~1200 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>°</mo></semantics></math></inline-formula>C. As a result, the on-line <i>mf</i>ERT is able to reconstruct the Al<sub>2</sub>O<sub>3</sub> rod inclusion images in the high-temperature fields with low error, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">ς</mi><mrow><msup><mi>f</mi><mi>L</mi></msup><mrow><mo>,</mo><mo> </mo><mi>T</mi></mrow></mrow></msub></mrow></semantics></math></inline-formula> = 5.99%, at 1000 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>°</mo></semantics></math></inline-formula>C, and an average error<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mo stretchy="false">⟨</mo><msub><mi mathvariant="sans-serif">ς</mi><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></msub><mo stretchy="false">⟩</mo></mrow></semantics></math></inline-formula> = 9.2%. |
first_indexed | 2024-03-09T23:09:19Z |
format | Article |
id | doaj.art-efbfe03b05634596913d2257a499f98d |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-09T23:09:19Z |
publishDate | 2022-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-efbfe03b05634596913d2257a499f98d2023-11-23T17:49:18ZengMDPI AGSensors1424-82202022-01-01223102510.3390/s22031025On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten OxidePrima Asmara Sejati0Noritaka Saito1Yosephus Ardean Kurnianto Prayitno2Koji Tanaka3Panji Nursetia Darma4Miku Arisato5Kunihiko Nakashima6Masahiro Takei7Department of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanDepartment of Materials, Kyushu University, Fukuoka 819-0395, JapanDepartment of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanDepartment of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanDepartment of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanDepartment of Materials, Kyushu University, Fukuoka 819-0395, JapanDepartment of Materials, Kyushu University, Fukuoka 819-0395, JapanDepartment of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanAn on-line multi-frequency electrical resistance tomography (<i>mf</i>ERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of platinum-rhodium (Pt-20mass%Rh) alloy covered by non-conductive aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) to prevent an electrical short. The noise reduction hardware has been designed by two approaches: (1) total harmonic distortion (THD) for the robust multiplexer, and (2) a current injection frequency pair: low <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></semantics></math></inline-formula> and high <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup></mrow></semantics></math></inline-formula>, for thermal noise compensation. THD is determined by a percentage evaluation of <i>k-</i>th harmonic distortions of ZnO at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>f</mi><mo>=</mo><mn>0</mn></mrow></mrow></semantics></math></inline-formula>.1~10,000 Hz. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup></mrow></semantics></math></inline-formula> are determined by the thermal noise behavior estimation at different temperatures. At <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mi>f</mi><mo> </mo></mrow><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>00 Hz, the THD percentage is relatively high and fluctuates; otherwise, THD dramatically declines, nearly reaching zero. At the determined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup><mo>≥</mo></mrow></semantics></math></inline-formula> 10,000 Hz and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup><mo>≈</mo></mrow></semantics></math></inline-formula> 1,000,000 Hz, thermal noise is significantly compensated. The on-line <i>mf</i>ERT was tested in the experiments of a non-conductive Al<sub>2</sub>O<sub>3</sub> rod dipped into conductive molten zinc-borate (60ZnO-40B<sub>2</sub>O<sub>3</sub>) at 1000~1200 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>°</mo></semantics></math></inline-formula>C. As a result, the on-line <i>mf</i>ERT is able to reconstruct the Al<sub>2</sub>O<sub>3</sub> rod inclusion images in the high-temperature fields with low error, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">ς</mi><mrow><msup><mi>f</mi><mi>L</mi></msup><mrow><mo>,</mo><mo> </mo><mi>T</mi></mrow></mrow></msub></mrow></semantics></math></inline-formula> = 5.99%, at 1000 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>°</mo></semantics></math></inline-formula>C, and an average error<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mo stretchy="false">⟨</mo><msub><mi mathvariant="sans-serif">ς</mi><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></msub><mo stretchy="false">⟩</mo></mrow></semantics></math></inline-formula> = 9.2%.https://www.mdpi.com/1424-8220/22/3/1025multi-frequency electrical resistance tomographytotal harmonic distortionthermal noisemolten oxidecrystalline phase imaging |
spellingShingle | Prima Asmara Sejati Noritaka Saito Yosephus Ardean Kurnianto Prayitno Koji Tanaka Panji Nursetia Darma Miku Arisato Kunihiko Nakashima Masahiro Takei On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide Sensors multi-frequency electrical resistance tomography total harmonic distortion thermal noise molten oxide crystalline phase imaging |
title | On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide |
title_full | On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide |
title_fullStr | On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide |
title_full_unstemmed | On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide |
title_short | On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide |
title_sort | on line multi frequency electrical resistance tomography i mf i ert device for crystalline phase imaging in high temperature molten oxide |
topic | multi-frequency electrical resistance tomography total harmonic distortion thermal noise molten oxide crystalline phase imaging |
url | https://www.mdpi.com/1424-8220/22/3/1025 |
work_keys_str_mv | AT primaasmarasejati onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide AT noritakasaito onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide AT yosephusardeankurniantoprayitno onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide AT kojitanaka onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide AT panjinursetiadarma onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide AT mikuarisato onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide AT kunihikonakashima onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide AT masahirotakei onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide |