On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide

An on-line multi-frequency electrical resistance tomography (<i>mf</i>ERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of pla...

Full description

Bibliographic Details
Main Authors: Prima Asmara Sejati, Noritaka Saito, Yosephus Ardean Kurnianto Prayitno, Koji Tanaka, Panji Nursetia Darma, Miku Arisato, Kunihiko Nakashima, Masahiro Takei
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/3/1025
_version_ 1797484711066468352
author Prima Asmara Sejati
Noritaka Saito
Yosephus Ardean Kurnianto Prayitno
Koji Tanaka
Panji Nursetia Darma
Miku Arisato
Kunihiko Nakashima
Masahiro Takei
author_facet Prima Asmara Sejati
Noritaka Saito
Yosephus Ardean Kurnianto Prayitno
Koji Tanaka
Panji Nursetia Darma
Miku Arisato
Kunihiko Nakashima
Masahiro Takei
author_sort Prima Asmara Sejati
collection DOAJ
description An on-line multi-frequency electrical resistance tomography (<i>mf</i>ERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of platinum-rhodium (Pt-20mass%Rh) alloy covered by non-conductive aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) to prevent an electrical short. The noise reduction hardware has been designed by two approaches: (1) total harmonic distortion (THD) for the robust multiplexer, and (2) a current injection frequency pair: low <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></semantics></math></inline-formula> and high <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup></mrow></semantics></math></inline-formula>, for thermal noise compensation. THD is determined by a percentage evaluation of <i>k-</i>th harmonic distortions of ZnO at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>f</mi><mo>=</mo><mn>0</mn></mrow></mrow></semantics></math></inline-formula>.1~10,000 Hz. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup></mrow></semantics></math></inline-formula> are determined by the thermal noise behavior estimation at different temperatures. At <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mi>f</mi><mo> </mo></mrow><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>00 Hz, the THD percentage is relatively high and fluctuates; otherwise, THD dramatically declines, nearly reaching zero. At the determined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup><mo>≥</mo></mrow></semantics></math></inline-formula> 10,000 Hz and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup><mo>≈</mo></mrow></semantics></math></inline-formula> 1,000,000 Hz, thermal noise is significantly compensated. The on-line <i>mf</i>ERT was tested in the experiments of a non-conductive Al<sub>2</sub>O<sub>3</sub> rod dipped into conductive molten zinc-borate (60ZnO-40B<sub>2</sub>O<sub>3</sub>) at 1000~1200 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>°</mo></semantics></math></inline-formula>C. As a result, the on-line <i>mf</i>ERT is able to reconstruct the Al<sub>2</sub>O<sub>3</sub> rod inclusion images in the high-temperature fields with low error, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">ς</mi><mrow><msup><mi>f</mi><mi>L</mi></msup><mrow><mo>,</mo><mo> </mo><mi>T</mi></mrow></mrow></msub></mrow></semantics></math></inline-formula> = 5.99%, at 1000 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>°</mo></semantics></math></inline-formula>C, and an average error<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mo stretchy="false">⟨</mo><msub><mi mathvariant="sans-serif">ς</mi><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></msub><mo stretchy="false">⟩</mo></mrow></semantics></math></inline-formula> = 9.2%.
first_indexed 2024-03-09T23:09:19Z
format Article
id doaj.art-efbfe03b05634596913d2257a499f98d
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T23:09:19Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-efbfe03b05634596913d2257a499f98d2023-11-23T17:49:18ZengMDPI AGSensors1424-82202022-01-01223102510.3390/s22031025On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten OxidePrima Asmara Sejati0Noritaka Saito1Yosephus Ardean Kurnianto Prayitno2Koji Tanaka3Panji Nursetia Darma4Miku Arisato5Kunihiko Nakashima6Masahiro Takei7Department of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanDepartment of Materials, Kyushu University, Fukuoka 819-0395, JapanDepartment of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanDepartment of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanDepartment of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanDepartment of Materials, Kyushu University, Fukuoka 819-0395, JapanDepartment of Materials, Kyushu University, Fukuoka 819-0395, JapanDepartment of Mechanical Engineering, Division of Fundamental Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, JapanAn on-line multi-frequency electrical resistance tomography (<i>mf</i>ERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of platinum-rhodium (Pt-20mass%Rh) alloy covered by non-conductive aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) to prevent an electrical short. The noise reduction hardware has been designed by two approaches: (1) total harmonic distortion (THD) for the robust multiplexer, and (2) a current injection frequency pair: low <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></semantics></math></inline-formula> and high <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup></mrow></semantics></math></inline-formula>, for thermal noise compensation. THD is determined by a percentage evaluation of <i>k-</i>th harmonic distortions of ZnO at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>f</mi><mo>=</mo><mn>0</mn></mrow></mrow></semantics></math></inline-formula>.1~10,000 Hz. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup></mrow></semantics></math></inline-formula> are determined by the thermal noise behavior estimation at different temperatures. At <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mrow><mi>f</mi><mo> </mo></mrow><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>00 Hz, the THD percentage is relatively high and fluctuates; otherwise, THD dramatically declines, nearly reaching zero. At the determined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>L</mi></msup><mo>≥</mo></mrow></semantics></math></inline-formula> 10,000 Hz and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><mi>H</mi></msup><mo>≈</mo></mrow></semantics></math></inline-formula> 1,000,000 Hz, thermal noise is significantly compensated. The on-line <i>mf</i>ERT was tested in the experiments of a non-conductive Al<sub>2</sub>O<sub>3</sub> rod dipped into conductive molten zinc-borate (60ZnO-40B<sub>2</sub>O<sub>3</sub>) at 1000~1200 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>°</mo></semantics></math></inline-formula>C. As a result, the on-line <i>mf</i>ERT is able to reconstruct the Al<sub>2</sub>O<sub>3</sub> rod inclusion images in the high-temperature fields with low error, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="sans-serif">ς</mi><mrow><msup><mi>f</mi><mi>L</mi></msup><mrow><mo>,</mo><mo> </mo><mi>T</mi></mrow></mrow></msub></mrow></semantics></math></inline-formula> = 5.99%, at 1000 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>°</mo></semantics></math></inline-formula>C, and an average error<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mo stretchy="false">⟨</mo><msub><mi mathvariant="sans-serif">ς</mi><mrow><msup><mi>f</mi><mi>L</mi></msup></mrow></msub><mo stretchy="false">⟩</mo></mrow></semantics></math></inline-formula> = 9.2%.https://www.mdpi.com/1424-8220/22/3/1025multi-frequency electrical resistance tomographytotal harmonic distortionthermal noisemolten oxidecrystalline phase imaging
spellingShingle Prima Asmara Sejati
Noritaka Saito
Yosephus Ardean Kurnianto Prayitno
Koji Tanaka
Panji Nursetia Darma
Miku Arisato
Kunihiko Nakashima
Masahiro Takei
On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide
Sensors
multi-frequency electrical resistance tomography
total harmonic distortion
thermal noise
molten oxide
crystalline phase imaging
title On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide
title_full On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide
title_fullStr On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide
title_full_unstemmed On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide
title_short On-Line Multi-Frequency Electrical Resistance Tomography (<i>mf</i>ERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide
title_sort on line multi frequency electrical resistance tomography i mf i ert device for crystalline phase imaging in high temperature molten oxide
topic multi-frequency electrical resistance tomography
total harmonic distortion
thermal noise
molten oxide
crystalline phase imaging
url https://www.mdpi.com/1424-8220/22/3/1025
work_keys_str_mv AT primaasmarasejati onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide
AT noritakasaito onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide
AT yosephusardeankurniantoprayitno onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide
AT kojitanaka onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide
AT panjinursetiadarma onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide
AT mikuarisato onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide
AT kunihikonakashima onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide
AT masahirotakei onlinemultifrequencyelectricalresistancetomographyimfiertdeviceforcrystallinephaseimaginginhightemperaturemoltenoxide