Interfacial microstructure of Al/Ta dissimilar joints by magnetic pulse welding

Magnetic pulse welding (MPW) is performed to join Al/Ta dissimilar metals possessing no mutual solubility. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS), the Al/Ta interface has been characterized in detail. The res...

Full description

Bibliographic Details
Main Authors: Wentao Zhang, Yuhua Chen, Jilin Xie, Timing Zhang, Shanlin Wang, Xiao Song, Limeng Yin
Format: Article
Language:English
Published: Elsevier 2023-03-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2238785423002983
Description
Summary:Magnetic pulse welding (MPW) is performed to join Al/Ta dissimilar metals possessing no mutual solubility. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS), the Al/Ta interface has been characterized in detail. The results show that the inhomogeneity of the MPW process resulting in the formation of different types of interfaces at the interface, namely, transition zone, irregular interface and flat interface. The co-existence of nanocrystalline/amorphous bi-phase interface and continuous intermetallic compound (IMC) at the same cooling rate proves that high strain is the main cause of interfacial amorphous. Nanoscale crystallization of amorphous is the result of the limited time and energy input at the interface. This finding challenges the general view on magnetic pulse welding of dissimilar metals. The results can be used in the development of new joints for the metals possessing no mutual solubility.
ISSN:2238-7854