Control over patch encounters changes foraging behavior

Summary: Foraging is a common decision problem in natural environments. When new exploitable sites are always available, a simple optimal strategy is to leave a current site when its return falls below a single average reward rate. Here, we examined foraging in a more structured environment, with a...

Full description

Bibliographic Details
Main Authors: Sam Hall-McMaster, Peter Dayan, Nicolas W. Schuck
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004221009731
Description
Summary:Summary: Foraging is a common decision problem in natural environments. When new exploitable sites are always available, a simple optimal strategy is to leave a current site when its return falls below a single average reward rate. Here, we examined foraging in a more structured environment, with a limited number of sites that replenished at different rates and had to be revisited. When participants could choose sites, they visited fast-replenishing sites more often, left sites at higher levels of reward, and achieved a higher net reward rate. Decisions to exploit-or-leave a site were best explained with a computational model that included both the average reward rate for the environment and reward information about the unattended sites. This suggests that unattended sites influence leave decisions, in foraging environments where sites can be revisited.
ISSN:2589-0042