Evolutionary Change in Gut Specification in <i>Caenorhabditis</i> Centers on the GATA Factor ELT-3 in an Example of Developmental System Drift

Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode <i>Caenorhabditis elegans</i> has been the subject of study for more than two decades. In this network, the maternal f...

Full description

Bibliographic Details
Main Authors: Gina Broitman-Maduro, Morris F. Maduro
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Journal of Developmental Biology
Subjects:
Online Access:https://www.mdpi.com/2221-3759/11/3/32
Description
Summary:Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode <i>Caenorhabditis elegans</i> has been the subject of study for more than two decades. In this network, the maternal factors SKN-1/Nrf and POP-1/TCF activate a zygotic GATA factor cascade consisting of the regulators MED-1,2 → END-1,3 → ELT-2,7, leading to the specification of the gut in early embryos. Paradoxically, the MED, END, and ELT-7 regulators are present only in species closely related to <i>C. elegans</i>, raising the question of how the gut can be specified without them. Recent work found that ELT-3, a GATA factor without an endodermal role in <i>C. elegans</i>, acts in a simpler ELT-3 → ELT-2 network to specify gut in more distant species. The simpler ELT-3 → ELT-2 network may thus represent an ancestral pathway. In this review, we describe the elucidation of the gut specification network in <i>C. elegans</i> and related species and propose a model by which the more complex network might have formed. Because the evolution of this network occurred without a change in phenotype, it is an example of the phenomenon of Developmental System Drift.
ISSN:2221-3759