Optimization of bacterioruberin production from Halorubrum ruber and assessment of its antioxidant potential

Abstract Haloarchaea produce bacterioruberin, a major C50 carotenoid with antioxidant properties that allow for its potential application in the food, cosmetic, and pharmaceutical industries. This study aimed to optimize culture conditions for total carotenoid, predominantly comprising bacterioruber...

Full description

Bibliographic Details
Main Authors: Chi Young Hwang, Eui-Sang Cho, Sungjun Kim, Kyobum Kim, Myung-Ji Seo
Format: Article
Language:English
Published: BMC 2024-01-01
Series:Microbial Cell Factories
Subjects:
Online Access:https://doi.org/10.1186/s12934-023-02274-0
Description
Summary:Abstract Haloarchaea produce bacterioruberin, a major C50 carotenoid with antioxidant properties that allow for its potential application in the food, cosmetic, and pharmaceutical industries. This study aimed to optimize culture conditions for total carotenoid, predominantly comprising bacterioruberin, production using Halorubrum ruber MBLA0099. A one-factor-at-a-time and statistically-based experimental design were applied to optimize the culture conditions. Culture in the optimized medium caused an increase in total carotenoid production from 0.496 to 1.966 mg L− 1 Maximal carotenoid productivity was achieved in a 7-L laboratory-scale fermentation and represented a 6.05-fold increase (0.492 mg L–1 d–1). The carotenoid extracts from strain MBLA0099 exhibited a 1.8–10.3-fold higher antioxidant activity in vitro, and allowed for a higher survival rate of Caenorhabditis elegans under oxidative stress conditions. These results demonstrated that Hrr. ruber MBLA0099 has significant potential as a haloarchaon for the commercial production of bacterioruberin.
ISSN:1475-2859