Permutation Groups Generated by <i>γ</i>-Cycles

A <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-cycle is a cycle of the form <inline-formula><math xmlns="http://www.w3.org/...

Full description

Bibliographic Details
Main Author: Răzvan Diaconescu
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/10/528
_version_ 1827651699168247808
author Răzvan Diaconescu
author_facet Răzvan Diaconescu
author_sort Răzvan Diaconescu
collection DOAJ
description A <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-cycle is a cycle of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>+</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>i</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula> in the symmetric group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>n</mi></msub></semantics></math></inline-formula>. We study the subgroups of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>n</mi></msub></semantics></math></inline-formula> generated by several sets of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-cycles. Our mathematical development is strongly supported by computational experiments and proofs based on do-it-yourself programming with the logic-based language Maude.
first_indexed 2024-03-09T20:43:16Z
format Article
id doaj.art-efef70045ce94f88a0657c45183aed68
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T20:43:16Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-efef70045ce94f88a0657c45183aed682023-11-23T22:53:50ZengMDPI AGAxioms2075-16802022-10-01111052810.3390/axioms11100528Permutation Groups Generated by <i>γ</i>-CyclesRăzvan Diaconescu0Simion Stoilow Institute of Mathematics of the Romanian Academy, 010702 Bucharest, RomaniaA <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-cycle is a cycle of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>i</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>+</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>i</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula> in the symmetric group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>n</mi></msub></semantics></math></inline-formula>. We study the subgroups of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>n</mi></msub></semantics></math></inline-formula> generated by several sets of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-cycles. Our mathematical development is strongly supported by computational experiments and proofs based on do-it-yourself programming with the logic-based language Maude.https://www.mdpi.com/2075-1680/11/10/528permutation groupsexperimental mathematicspreordered algebrarewriting
spellingShingle Răzvan Diaconescu
Permutation Groups Generated by <i>γ</i>-Cycles
Axioms
permutation groups
experimental mathematics
preordered algebra
rewriting
title Permutation Groups Generated by <i>γ</i>-Cycles
title_full Permutation Groups Generated by <i>γ</i>-Cycles
title_fullStr Permutation Groups Generated by <i>γ</i>-Cycles
title_full_unstemmed Permutation Groups Generated by <i>γ</i>-Cycles
title_short Permutation Groups Generated by <i>γ</i>-Cycles
title_sort permutation groups generated by i γ i cycles
topic permutation groups
experimental mathematics
preordered algebra
rewriting
url https://www.mdpi.com/2075-1680/11/10/528
work_keys_str_mv AT razvandiaconescu permutationgroupsgeneratedbyigicycles