Summary: | The Fock expansion, which describes the properties of two-electron atoms near the nucleus, is studied. The angular Fock coefficients <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ψ</mi><mrow><mi>k</mi><mo>,</mo><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with the maximum possible value of subscript <i>p</i> are calculated on examples of the coefficients with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>10</mn></mrow></semantics></math></inline-formula>. The presented technique makes it possible to calculate such angular coefficients for any arbitrarily large <i>k</i>. The mentioned coefficients being leading in the logarithmic power series representing the Fock expansion, they may be indispensable for the development of simple methods for calculating the helium-like electronic structure. The theoretical results obtained are verified by other suitable methods. The Wolfram Mathematica is used extensively.
|