Biochemical Composition of Seston Reflecting the Physiological Status and Community Composition of Phytoplankton in a Temperate Coastal Embayment of Korea

The biochemical composition of seston along a salinity gradient were examined in the low-turbidity, temperate, estuarine embayment, Gwangyang Bay in Korea. Seasonal variations in sestonic protein (PRT), carbohydrate (CHO), and lipid (LIP) concentrations were analyzed to assess the effects of physiol...

Full description

Bibliographic Details
Main Authors: Riaz Bibi, Hee Yoon Kang, Dongyoung Kim, Jaebin Jang, Changseong Kim, Goutam K. Kundu, Chang-Keun Kang
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/22/3221
Description
Summary:The biochemical composition of seston along a salinity gradient were examined in the low-turbidity, temperate, estuarine embayment, Gwangyang Bay in Korea. Seasonal variations in sestonic protein (PRT), carbohydrate (CHO), and lipid (LIP) concentrations were analyzed to assess the effects of physiological status and taxonomic composition of phytoplankton. The concentrations of biochemical compounds displayed a close relationship with chlorophyll <i>a</i> (Chl<i>a)</i>. PRT:CHO ratios were high (>1.0) in the estuarine channel in warmer months and in whole bay in February, indicating a N-replete condition for phytoplankton growth. High CHO:LIP ratios (>2.5) in the saline deep-bay area during the warmer months (>2.0) emphasized the importance of temperature and photoperiod over nutritional conditions. The low POC:Chl<i>a</i> (<200), molar C:N (~7) ratios, and biopolymeric carbon concentrations coupled with high primary productivity indicated a low detrital contribution to the particulate organic matter pool. Diatom dominance throughout the year contributed to consistently high carbohydrate concentrations. Furthermore, generalized additive models highlighted that phytoplankton community (i.e., size) structure may serve as an important descriptor of sestonic biochemical composition. Collectively, our results suggest that physiological and taxonomic features of phytoplankton play prominent roles in determining the biochemical composition of seston, supporting the fact that the ecosystem processes in Gwangyang Bay are largely based on phytoplankton dynamics.
ISSN:2073-4441