A free Lie algebra approach to curvature corrections to flat space-time

Abstract We investigate a systematic approach to include curvature corrections to the isometry algebra of flat space-time order-by-order in the curvature scale. The Poincaré algebra is extended to a free Lie algebra, with generalised boosts and translations that no longer commute. The additional gen...

Full description

Bibliographic Details
Main Authors: Joaquim Gomis, Axel Kleinschmidt, Diederik Roest, Patricio Salgado-Rebolledo
Format: Article
Language:English
Published: SpringerOpen 2020-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP09(2020)068
Description
Summary:Abstract We investigate a systematic approach to include curvature corrections to the isometry algebra of flat space-time order-by-order in the curvature scale. The Poincaré algebra is extended to a free Lie algebra, with generalised boosts and translations that no longer commute. The additional generators satisfy a level-ordering and encode the curvature corrections at that order. This eventually results in an infinite-dimensional algebra that we refer to as Poincaré∞, and we show that it contains among others an (A)dS quotient. We discuss a non-linear realisation of this infinite-dimensional algebra, and construct a particle action based on it. The latter yields a geodesic equation that includes (A)dS curvature corrections at every order.
ISSN:1029-8479