Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River Basin

The Ili Kashi River Basin is an area with relatively abundant precipitation within the arid region of Northwest China. Using water samples from atmospheric precipitation, surface water, groundwater, and snow meltwater in the basin from July 2018 to June 2021, the isotope characteristics of the diffe...

Full description

Bibliographic Details
Main Authors: Zilalai Abudouwaili, Yuhui Yang, Xiancheng Feng
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/17/3127
_version_ 1797581817111379968
author Zilalai Abudouwaili
Yuhui Yang
Xiancheng Feng
author_facet Zilalai Abudouwaili
Yuhui Yang
Xiancheng Feng
author_sort Zilalai Abudouwaili
collection DOAJ
description The Ili Kashi River Basin is an area with relatively abundant precipitation within the arid region of Northwest China. Using water samples from atmospheric precipitation, surface water, groundwater, and snow meltwater in the basin from July 2018 to June 2021, the isotope characteristics of the different water bodies in the study area were determined from the perspectives of altitude, season, and interannual changes. Combined with the meteorological data on precipitation and the HYSPLIT model, the water vapor sources of atmospheric precipitation in the Ili Kashi River Basin were tracked and analyzed. Studying the hydrogen and oxygen stable isotopes in the different water bodies in this area can provide substantial scientific support for the generation, development, and change processes of river water resources in Northwest China, and has practical significance for the utilization of water resources. The results derived are as follows. (1) Hydrogen–oxygen isotope changes in the Ili Kashi River Basin were broadly characterized by a continuous enrichment from low-to-high elevations in the summer to a maximum value, followed by gradual depletion, whereas the changes in δ<sup>18</sup>O and δD were reversed in autumn. (2) The river water values of δD and δ<sup>18</sup>O fluctuated between −107.15‰ and −68.13‰ and between −18.53‰ and −9.66‰, respectively, during the study period. (3) The variation in δ<sup>18</sup>O and δD in the precipitation was consistent, showing characteristics of summer enrichment and winter dilution, and the precipitation line equation is δD = 7.30δ<sup>18</sup>O + 9.29. (4) In autumn and winter, the groundwater δD and δ<sup>18</sup>O values fluctuated between −99.87‰ and −84.95‰ and between −15.50‰ and −10.38‰, respectively; during spring and summer, the δD and δ<sup>18</sup>O values varied from −99.27‰ to −87.07‰ and from −15.15‰ to −12.00‰, respectively. The hydrogen–oxygen stable isotope value of the ice–snow meltwater in autumn was higher than that in summer. (5) On the basis of the d-excess variation in each precipitation event over the 3 years and an analysis of the water vapor sources using the HPSPLIT backward trajectory tracking model, the source of water vapor in the study area is primarily the surrounding land water vapor, with the Atlantic Ocean being the main contributor of oceanic water vapor.
first_indexed 2024-03-10T23:10:59Z
format Article
id doaj.art-f028c70b8e5744ca9f92be4cbdd84840
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-10T23:10:59Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-f028c70b8e5744ca9f92be4cbdd848402023-11-19T09:02:36ZengMDPI AGWater2073-44412023-08-011517312710.3390/w15173127Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River BasinZilalai Abudouwaili0Yuhui Yang1Xiancheng Feng2Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Faculty of Geographic Science and Tourism, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, ChinaXinjiang Laboratory of Lake Environment and Resources in Arid Zone, Faculty of Geographic Science and Tourism, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, ChinaXinjiang Laboratory of Lake Environment and Resources in Arid Zone, Faculty of Geographic Science and Tourism, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, ChinaThe Ili Kashi River Basin is an area with relatively abundant precipitation within the arid region of Northwest China. Using water samples from atmospheric precipitation, surface water, groundwater, and snow meltwater in the basin from July 2018 to June 2021, the isotope characteristics of the different water bodies in the study area were determined from the perspectives of altitude, season, and interannual changes. Combined with the meteorological data on precipitation and the HYSPLIT model, the water vapor sources of atmospheric precipitation in the Ili Kashi River Basin were tracked and analyzed. Studying the hydrogen and oxygen stable isotopes in the different water bodies in this area can provide substantial scientific support for the generation, development, and change processes of river water resources in Northwest China, and has practical significance for the utilization of water resources. The results derived are as follows. (1) Hydrogen–oxygen isotope changes in the Ili Kashi River Basin were broadly characterized by a continuous enrichment from low-to-high elevations in the summer to a maximum value, followed by gradual depletion, whereas the changes in δ<sup>18</sup>O and δD were reversed in autumn. (2) The river water values of δD and δ<sup>18</sup>O fluctuated between −107.15‰ and −68.13‰ and between −18.53‰ and −9.66‰, respectively, during the study period. (3) The variation in δ<sup>18</sup>O and δD in the precipitation was consistent, showing characteristics of summer enrichment and winter dilution, and the precipitation line equation is δD = 7.30δ<sup>18</sup>O + 9.29. (4) In autumn and winter, the groundwater δD and δ<sup>18</sup>O values fluctuated between −99.87‰ and −84.95‰ and between −15.50‰ and −10.38‰, respectively; during spring and summer, the δD and δ<sup>18</sup>O values varied from −99.27‰ to −87.07‰ and from −15.15‰ to −12.00‰, respectively. The hydrogen–oxygen stable isotope value of the ice–snow meltwater in autumn was higher than that in summer. (5) On the basis of the d-excess variation in each precipitation event over the 3 years and an analysis of the water vapor sources using the HPSPLIT backward trajectory tracking model, the source of water vapor in the study area is primarily the surrounding land water vapor, with the Atlantic Ocean being the main contributor of oceanic water vapor.https://www.mdpi.com/2073-4441/15/17/3127Kashi Riverhydrogen–oxygen stable isotopewater vapor sources
spellingShingle Zilalai Abudouwaili
Yuhui Yang
Xiancheng Feng
Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River Basin
Water
Kashi River
hydrogen–oxygen stable isotope
water vapor sources
title Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River Basin
title_full Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River Basin
title_fullStr Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River Basin
title_full_unstemmed Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River Basin
title_short Characteristics of Hydrogen–Oxygen Isotopes and Water Vapor Sources of Different Waters in the Ili Kashi River Basin
title_sort characteristics of hydrogen oxygen isotopes and water vapor sources of different waters in the ili kashi river basin
topic Kashi River
hydrogen–oxygen stable isotope
water vapor sources
url https://www.mdpi.com/2073-4441/15/17/3127
work_keys_str_mv AT zilalaiabudouwaili characteristicsofhydrogenoxygenisotopesandwatervaporsourcesofdifferentwatersintheilikashiriverbasin
AT yuhuiyang characteristicsofhydrogenoxygenisotopesandwatervaporsourcesofdifferentwatersintheilikashiriverbasin
AT xianchengfeng characteristicsofhydrogenoxygenisotopesandwatervaporsourcesofdifferentwatersintheilikashiriverbasin