Summary: | Tuberculosis (TB) is a worldwide burden whose total control and eradication remains a challenge due to factors including false positive/negative diagnoses associated with the poor sensitivity of the current diagnostics in immune-compromised and post-vaccinated individuals. As these factors complicate both diagnosis and treatment, the early diagnosis of TB is of pivotal importance towards reaching the universal vision of a TB-free world. Here, an aptasensor for signaling an interferon gamma (IFN-γ) TB biomarker at low levels is reported. The aptasensor was assembled through gold–thiol interactions between poly(3,4-propylenedioxythiophene), gold nanoparticles, and a thiol-modified DNA aptamer specific to IFN-γ. The aptasensor sensitively detected IFN-γ in spiked pleural fluid samples with a detection limit of 0.09 pg/mL within a linear range from 0.2 pg/mL to 1.2 pg/mL. The good performance of the reported aptasensor indicates that it holds the potential for application in the early diagnosis of, in addition to TB, various diseases associated with IFN-γ release in clinical samples.
|