High-Resolution Optical Imaging and Sensing Using Quantum Emitters in Hexagonal Boron-Nitride
Super-resolution microscopy has allowed optical imaging to reach resolutions well beyond the limit imposed by the diffraction of light. The advancement of super-resolution techniques is often an application-driven endeavor. However, progress in material science plays a central role too, as it allows...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-04-01
|
Series: | Frontiers in Physics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fphy.2021.641341/full |
Summary: | Super-resolution microscopy has allowed optical imaging to reach resolutions well beyond the limit imposed by the diffraction of light. The advancement of super-resolution techniques is often an application-driven endeavor. However, progress in material science plays a central role too, as it allows for the synthesis and engineering of nanomaterials with the unique chemical and physical properties required to realize super-resolution imaging strategies. This aspect is the focus of this review. We show that quantum emitters in two-dimensional hexagonal boron nitride are proving to be excellent candidate systems for the realization of advanced high-resolution imaging techniques, and spin-based quantum sensing applications. |
---|---|
ISSN: | 2296-424X |