Modeling performances of maize cultivars under current and future climate scenarios in southern central Ethiopian rift valley

Abstract Background In southern central rift valley of Ethiopia, maize is an important crop because of its adaptation to wider agro-ecologies and higher yield potential. However, most cultivars were not parameterized to include in the database of Decision Support System for Agro-technology Transfer...

Full description

Bibliographic Details
Main Authors: Daniel Markos, Walelign Worku, Girma Mamo
Format: Article
Language:English
Published: BMC 2024-03-01
Series:CABI Agriculture and Bioscience
Subjects:
Online Access:https://doi.org/10.1186/s43170-024-00232-3
Description
Summary:Abstract Background In southern central rift valley of Ethiopia, maize is an important crop because of its adaptation to wider agro-ecologies and higher yield potential. However, most cultivars were not parameterized to include in the database of Decision Support System for Agro-technology Transfer (DSSAT). As a result simulation of growth and yield of those cultivars was not possible under changing climate. Methods Two set of independent crop, management and soil data were used for calibration and validation of genetic coefficients of maize cultivars (BH-540, BH-546, BH-547, Shala and Shone) under condition of historic weather (1990–2020). Later, we simulated the growth and yield of maize using twenty multimodel climate ensembles across RCP 4.5 and 8.5 during early, medium and late century across Shamana, Bilate, Hawassa and Dilla clusters using DSSATv4.8 model. Results Cultivars BH-540, BH-546, BH-547, Shala and Shone produced yields of 5.7, 5.4, 5.2, 6.9 and 7.4 t ha−1 with the corresponding error percentage of − 0.1, − 0.8, − 1.0, − 6.1 and 2.6%. The results of normalized root mean square were 1.14–4.2 and 3.0–3.9%, for grain yield during calibration and validation, respectively showing an excellent rating. The simulation experiment produced 5.4–9.2 t ha−1 for grain yield of maize cultivars across the study areas, which is likely to fall close to 63.3% by 2070 if right adaptation options are not introduced necessitating switch in cultivars and production areas. Conclusions There is critical need for reduction of GHGs emissions, generation of innovative adaptation strategies, and development of drought and heat stress tolerant maize cultivars. Hence, researchers and policy makers shall act with utmost urgency to embark with breeding programs that target climate change adaptation traits in maize crop.
ISSN:2662-4044