Double-Composed Metric Spaces

The double-controlled metric-type space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">D</mi&g...

Full description

Bibliographic Details
Main Authors: Irshad Ayoob, Ng Zhen Chuan, Nabil Mlaiki
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/8/1866
_version_ 1827744605132554240
author Irshad Ayoob
Ng Zhen Chuan
Nabil Mlaiki
author_facet Irshad Ayoob
Ng Zhen Chuan
Nabil Mlaiki
author_sort Irshad Ayoob
collection DOAJ
description The double-controlled metric-type space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">D</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a metric space in which the triangle inequality has the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">D</mi><mrow><mo>(</mo><mi>η</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mo>≤</mo><msub><mi>ζ</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>η</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow><mi mathvariant="script">D</mi><mrow><mo>(</mo><mi>η</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>ζ</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mi mathvariant="script">D</mi><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>∈</mo><mi>X</mi></mrow></semantics></math></inline-formula>. The maps <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ζ</mi><mn>2</mn></msub><mo>:</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>→</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are called control functions. In this paper, we introduce a novel generalization of a metric space called a double-composed metric space, where the triangle inequality has the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">D</mi><mrow><mo>(</mo><mi>η</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mo>≤</mo><mi>α</mi><mfenced separators="" open="(" close=")"><mi mathvariant="script">D</mi><mo>(</mo><mi>η</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mfenced><mo>+</mo><mi>β</mi><mfenced separators="" open="(" close=")"><mi mathvariant="script">D</mi><mo>(</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>∈</mo><mi>X</mi></mrow></semantics></math></inline-formula>. In our new space, the control functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula> are composed of the metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> in the triangle inequality, where the control functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ζ</mi><mn>2</mn></msub><mo>:</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>→</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in a double-controlled metric-type space are multiplied with the metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula>. We establish some fixed-point theorems along with the examples and applications.
first_indexed 2024-03-11T04:47:11Z
format Article
id doaj.art-f04939c9a6634a7e88dea87b21f3b5c6
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T04:47:11Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-f04939c9a6634a7e88dea87b21f3b5c62023-11-17T20:17:41ZengMDPI AGMathematics2227-73902023-04-01118186610.3390/math11081866Double-Composed Metric SpacesIrshad Ayoob0Ng Zhen Chuan1Nabil Mlaiki2Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi ArabiaSchool of Mathematics, Universiti Sains Malaysia, Gelugor 11800, Penang, MalaysiaDepartment of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi ArabiaThe double-controlled metric-type space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi mathvariant="script">D</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a metric space in which the triangle inequality has the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">D</mi><mrow><mo>(</mo><mi>η</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mo>≤</mo><msub><mi>ζ</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>η</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow><mi mathvariant="script">D</mi><mrow><mo>(</mo><mi>η</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>ζ</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mi mathvariant="script">D</mi><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>∈</mo><mi>X</mi></mrow></semantics></math></inline-formula>. The maps <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ζ</mi><mn>2</mn></msub><mo>:</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>→</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are called control functions. In this paper, we introduce a novel generalization of a metric space called a double-composed metric space, where the triangle inequality has the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">D</mi><mrow><mo>(</mo><mi>η</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mo>≤</mo><mi>α</mi><mfenced separators="" open="(" close=")"><mi mathvariant="script">D</mi><mo>(</mo><mi>η</mi><mo>,</mo><mi>θ</mi><mo>)</mo></mfenced><mo>+</mo><mi>β</mi><mfenced separators="" open="(" close=")"><mi mathvariant="script">D</mi><mo>(</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>,</mo><mi>θ</mi><mo>,</mo><mi>μ</mi><mo>∈</mo><mi>X</mi></mrow></semantics></math></inline-formula>. In our new space, the control functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></semantics></math></inline-formula> are composed of the metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> in the triangle inequality, where the control functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ζ</mi><mn>2</mn></msub><mo>:</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>→</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in a double-controlled metric-type space are multiplied with the metric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula>. We establish some fixed-point theorems along with the examples and applications.https://www.mdpi.com/2227-7390/11/8/1866b-metric spacescontrolled metric spacesdouble-controlled metric-type spacesfixed pointdouble-composed metric spaces
spellingShingle Irshad Ayoob
Ng Zhen Chuan
Nabil Mlaiki
Double-Composed Metric Spaces
Mathematics
b-metric spaces
controlled metric spaces
double-controlled metric-type spaces
fixed point
double-composed metric spaces
title Double-Composed Metric Spaces
title_full Double-Composed Metric Spaces
title_fullStr Double-Composed Metric Spaces
title_full_unstemmed Double-Composed Metric Spaces
title_short Double-Composed Metric Spaces
title_sort double composed metric spaces
topic b-metric spaces
controlled metric spaces
double-controlled metric-type spaces
fixed point
double-composed metric spaces
url https://www.mdpi.com/2227-7390/11/8/1866
work_keys_str_mv AT irshadayoob doublecomposedmetricspaces
AT ngzhenchuan doublecomposedmetricspaces
AT nabilmlaiki doublecomposedmetricspaces