On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci Sequence

Let <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>&#8805...

Full description

Bibliographic Details
Main Author: Eva Trojovská
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/1/124
Description
Summary:Let <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>&#8805;</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> be the sequence of the Fibonacci numbers. The order (or rank) of appearance <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of a positive integer <i>n</i> is defined as the smallest positive integer <i>m</i> such that <i>n</i> divides <inline-formula> <math display="inline"> <semantics> <msub> <mi>F</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula>. In 1975, Sall&#233; proved that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>&#8804;</mo> <mn>2</mn> <mi>n</mi> </mrow> </semantics> </math> </inline-formula>, for all positive integers <i>n</i>. In this paper, we shall solve the Diophantine equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>2</mn> <mo>&#8722;</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>)</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula> for positive integers <i>n</i> and <i>k</i>.
ISSN:2227-7390