On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci Sequence

Let <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>&#8805...

Full description

Bibliographic Details
Main Author: Eva Trojovská
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/1/124
_version_ 1818846353676042240
author Eva Trojovská
author_facet Eva Trojovská
author_sort Eva Trojovská
collection DOAJ
description Let <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>&#8805;</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> be the sequence of the Fibonacci numbers. The order (or rank) of appearance <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of a positive integer <i>n</i> is defined as the smallest positive integer <i>m</i> such that <i>n</i> divides <inline-formula> <math display="inline"> <semantics> <msub> <mi>F</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula>. In 1975, Sall&#233; proved that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>&#8804;</mo> <mn>2</mn> <mi>n</mi> </mrow> </semantics> </math> </inline-formula>, for all positive integers <i>n</i>. In this paper, we shall solve the Diophantine equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>2</mn> <mo>&#8722;</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>)</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula> for positive integers <i>n</i> and <i>k</i>.
first_indexed 2024-12-19T05:44:12Z
format Article
id doaj.art-f054f8be98b34918adc990cdb32215e2
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-19T05:44:12Z
publishDate 2020-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-f054f8be98b34918adc990cdb32215e22022-12-21T20:33:54ZengMDPI AGMathematics2227-73902020-01-018112410.3390/math8010124math8010124On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci SequenceEva Trojovská0Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech RepublicLet <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>n</mi> <mo>&#8805;</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> be the sequence of the Fibonacci numbers. The order (or rank) of appearance <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of a positive integer <i>n</i> is defined as the smallest positive integer <i>m</i> such that <i>n</i> divides <inline-formula> <math display="inline"> <semantics> <msub> <mi>F</mi> <mi>m</mi> </msub> </semantics> </math> </inline-formula>. In 1975, Sall&#233; proved that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>&#8804;</mo> <mn>2</mn> <mi>n</mi> </mrow> </semantics> </math> </inline-formula>, for all positive integers <i>n</i>. In this paper, we shall solve the Diophantine equation <inline-formula> <math display="inline"> <semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>2</mn> <mo>&#8722;</mo> <mn>1</mn> <mo>/</mo> <mi>k</mi> <mo>)</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula> for positive integers <i>n</i> and <i>k</i>.https://www.mdpi.com/2227-7390/8/1/124diophantine equationasymptoticfibonacci numbersorder (rank) of appearancep-adic valuation
spellingShingle Eva Trojovská
On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci Sequence
Mathematics
diophantine equation
asymptotic
fibonacci numbers
order (rank) of appearance
p-adic valuation
title On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci Sequence
title_full On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci Sequence
title_fullStr On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci Sequence
title_full_unstemmed On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci Sequence
title_short On the Diophantine Equation <i>z</i>(<i>n</i>) = (2 − 1/<i>k</i>)<i>n</i> Involving the Order of Appearance in the Fibonacci Sequence
title_sort on the diophantine equation i z i i n i 2 1 i k i i n i involving the order of appearance in the fibonacci sequence
topic diophantine equation
asymptotic
fibonacci numbers
order (rank) of appearance
p-adic valuation
url https://www.mdpi.com/2227-7390/8/1/124
work_keys_str_mv AT evatrojovska onthediophantineequationiziini21ikiiniinvolvingtheorderofappearanceinthefibonaccisequence