Mechanical Behavior of Multi-Phase Steels Comprising Retained Austenite

The retained austenite (RA) in advanced high-strength steel (AHSS) grades, such as dual-phase (DP) steels, plays an important role on their formability. Thanks to the transformation-induced plasticity (TRIP) effect that occurs during the mechanically induced transformation of RA into martensite, add...

Full description

Bibliographic Details
Main Authors: Emin Semih Perdahcıoğlu, Hubert J. M. Geijselaers
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/2/498
Description
Summary:The retained austenite (RA) in advanced high-strength steel (AHSS) grades, such as dual-phase (DP) steels, plays an important role on their formability. Thanks to the transformation-induced plasticity (TRIP) effect that occurs during the mechanically induced transformation of RA into martensite, additional ductility is obtained. Martensite has a higher flow stress than austenite; hence, the transformation results in an apparent hardening, which is beneficial for the stability of deformation. The stability of RA at a given temperature strongly depends on its carbon content, which, in AHSS, is not uniform but distributed. The aim of this study is to build a model that predicts the transformation as well as TRIP in a DP steel grade with RA. A physics-based kinetic model is presented that captures the transformation of retained austenite based on the thermodynamic driving force of the applied stress. A direct analytical estimate of transformation plasticity is provided, which is consistent with the kinetic model. Transformation kinetics is incorporated in a self-consistent, mean-field homogenization-based constitutive model. Finally, an indication of the effect of transformation of retained austenite on formability is given.
ISSN:1996-1944