Comparing Carbon Origami from Polyaramid and Cellulose Sheets
Carbon origami enables the fabrication of lightweight and mechanically stiff 3D complex architectures of carbonaceous materials, which have a high potential to impact a wide range of applications positively. The precursor materials and their inherent microstructure play a crucial role in determining...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/13/4/503 |
_version_ | 1797434398035935232 |
---|---|
author | Monsur Islam Peter G. Weidler Dario Mager Jan G. Korvink Rodrigo Martinez-Duarte |
author_facet | Monsur Islam Peter G. Weidler Dario Mager Jan G. Korvink Rodrigo Martinez-Duarte |
author_sort | Monsur Islam |
collection | DOAJ |
description | Carbon origami enables the fabrication of lightweight and mechanically stiff 3D complex architectures of carbonaceous materials, which have a high potential to impact a wide range of applications positively. The precursor materials and their inherent microstructure play a crucial role in determining the properties of carbon origami structures. Here, non-porous polyaramid Nomex sheets and macroporous fibril cellulose sheets are explored as the precursor sheets for studying the effect of precursor nature and microstructure on the material and structural properties of the carbon origami structures. The fabrication process involves pre-creasing precursor sheets using a laser engraving process, followed by manual-folding and carbonization. The cellulose precursor experiences a severe structural shrinkage due to its macroporous fibril morphology, compared to the mostly non-porous morphology of Nomex-derived carbon. The morphological differences further yield a higher specific surface area for cellulose-derived carbon. However, Nomex results in more crystalline carbon than cellulose, featuring a turbostratic microstructure like glassy carbon. The combined effect of morphology and glass-like features leads to a high mechanical stiffness of 1.9 ± 0.2 MPa and specific modulus of 2.4 × 10<sup>4</sup> m<sup>2</sup>·s<sup>−2</sup> for the Nomex-derived carbon Miura-ori structure, which are significantly higher than cellulose-derived carbon Miura-ori (elastic modulus = 504.7 ± 88.2 kPa; specific modulus = 1.2 × 10<sup>4</sup> m<sup>2</sup>·s<sup>−2</sup>) and other carbonaceous origami structures reported in the literature. The results presented here are promising to expand the material library for carbon origami, which will help in the choice of suitable precursor and carbon materials for specific applications. |
first_indexed | 2024-03-09T10:31:38Z |
format | Article |
id | doaj.art-f05ec39c8ff2462d9e634f4488c8663b |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-03-09T10:31:38Z |
publishDate | 2022-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-f05ec39c8ff2462d9e634f4488c8663b2023-12-01T21:14:20ZengMDPI AGMicromachines2072-666X2022-03-0113450310.3390/mi13040503Comparing Carbon Origami from Polyaramid and Cellulose SheetsMonsur Islam0Peter G. Weidler1Dario Mager2Jan G. Korvink3Rodrigo Martinez-Duarte4Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyInstitut für Funktionelle Grenzflächen, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyInstitute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyInstitut für Funktionelle Grenzflächen, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyMultiscale Manufacturing Laboratory, Mechanical Engineering Department, Clemson University, Clemson, SC 29634, USACarbon origami enables the fabrication of lightweight and mechanically stiff 3D complex architectures of carbonaceous materials, which have a high potential to impact a wide range of applications positively. The precursor materials and their inherent microstructure play a crucial role in determining the properties of carbon origami structures. Here, non-porous polyaramid Nomex sheets and macroporous fibril cellulose sheets are explored as the precursor sheets for studying the effect of precursor nature and microstructure on the material and structural properties of the carbon origami structures. The fabrication process involves pre-creasing precursor sheets using a laser engraving process, followed by manual-folding and carbonization. The cellulose precursor experiences a severe structural shrinkage due to its macroporous fibril morphology, compared to the mostly non-porous morphology of Nomex-derived carbon. The morphological differences further yield a higher specific surface area for cellulose-derived carbon. However, Nomex results in more crystalline carbon than cellulose, featuring a turbostratic microstructure like glassy carbon. The combined effect of morphology and glass-like features leads to a high mechanical stiffness of 1.9 ± 0.2 MPa and specific modulus of 2.4 × 10<sup>4</sup> m<sup>2</sup>·s<sup>−2</sup> for the Nomex-derived carbon Miura-ori structure, which are significantly higher than cellulose-derived carbon Miura-ori (elastic modulus = 504.7 ± 88.2 kPa; specific modulus = 1.2 × 10<sup>4</sup> m<sup>2</sup>·s<sup>−2</sup>) and other carbonaceous origami structures reported in the literature. The results presented here are promising to expand the material library for carbon origami, which will help in the choice of suitable precursor and carbon materials for specific applications.https://www.mdpi.com/2072-666X/13/4/503celluloseNomexpolyaramidcarbonorigamilightweight |
spellingShingle | Monsur Islam Peter G. Weidler Dario Mager Jan G. Korvink Rodrigo Martinez-Duarte Comparing Carbon Origami from Polyaramid and Cellulose Sheets Micromachines cellulose Nomex polyaramid carbon origami lightweight |
title | Comparing Carbon Origami from Polyaramid and Cellulose Sheets |
title_full | Comparing Carbon Origami from Polyaramid and Cellulose Sheets |
title_fullStr | Comparing Carbon Origami from Polyaramid and Cellulose Sheets |
title_full_unstemmed | Comparing Carbon Origami from Polyaramid and Cellulose Sheets |
title_short | Comparing Carbon Origami from Polyaramid and Cellulose Sheets |
title_sort | comparing carbon origami from polyaramid and cellulose sheets |
topic | cellulose Nomex polyaramid carbon origami lightweight |
url | https://www.mdpi.com/2072-666X/13/4/503 |
work_keys_str_mv | AT monsurislam comparingcarbonorigamifrompolyaramidandcellulosesheets AT petergweidler comparingcarbonorigamifrompolyaramidandcellulosesheets AT dariomager comparingcarbonorigamifrompolyaramidandcellulosesheets AT jangkorvink comparingcarbonorigamifrompolyaramidandcellulosesheets AT rodrigomartinezduarte comparingcarbonorigamifrompolyaramidandcellulosesheets |