Regional Heritability Mapping of Quantitative Trait Loci Controlling Traits Related to Growth and Productivity in Popcorn (<i>Zea mays</i> L.)

The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain...

Full description

Bibliographic Details
Main Authors: Gabrielle Sousa Mafra, Janeo Eustáquio de Almeida Filho, Antônio Teixeira do Amaral Junior, Carlos Maldonado, Samuel Henrique Kamphorst, Valter Jário de Lima, Divino Rosa dos Santos Junior, Jhean Torres Leite, Pedro Henrique Araujo Diniz Santos, Talles de Oliveira Santos, Rosimeire Barboza Bispo, Uéliton Alves de Oliveira, Vitor Batista Pinto, Alexandre Pio Viana, Caio Cezar Guedes Correa, Sunny Ahmar, Freddy Mora-Poblete
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/10/9/1845
Description
Summary:The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.
ISSN:2223-7747