Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems
The optimum penetration of distributed generations into the distribution grid provides several technical and economic benefits. However, the computational time required to solve the constrained optimization problems increases with the increasing network scale and may be too long for online implement...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/15/24/9301 |
Summary: | The optimum penetration of distributed generations into the distribution grid provides several technical and economic benefits. However, the computational time required to solve the constrained optimization problems increases with the increasing network scale and may be too long for online implementations. This paper presents a parallel solution of a multi-objective distributed generation (DG) allocation and sizing problem to handle a large number of computations. The aim is to find the optimum number of processors in addition to energy loss and DG cost minimization. The proposed formulation is applied to a 33-bus test system, and the results are compared with themselves and with the base case operating conditions using the optimal values and three popular multi-objective optimization metrics. The results show that comparable solutions with high-efficiency values can be obtained up to a certain number of processors. |
---|---|
ISSN: | 1996-1073 |