Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves
The nanometer size Cu<sub>2</sub>O@WO<sub>3</sub>·H<sub>2</sub>O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O nanoleaves. The synthesis has been performed in toluene wi...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | Chemosensors |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-9040/11/9/495 |
_version_ | 1797580845403340800 |
---|---|
author | Justyna Jońca Kevin Castello-Lux Katia Fajerwerg Myrtil L. Kahn Vincent Collière Philippe Menini Izabela Sówka Pierre Fau |
author_facet | Justyna Jońca Kevin Castello-Lux Katia Fajerwerg Myrtil L. Kahn Vincent Collière Philippe Menini Izabela Sówka Pierre Fau |
author_sort | Justyna Jońca |
collection | DOAJ |
description | The nanometer size Cu<sub>2</sub>O@WO<sub>3</sub>·H<sub>2</sub>O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O nanoleaves. The synthesis has been performed in toluene without the addition of any ancillary ligands. The prepared nanocomposite has been deposited as a gas-sensitive layer on miniaturized silicon devices and heated up gradually to 500 °C in the ambient air. During the heating, the CuWO<sub>4</sub> phase is formed upon the reaction of Cu<sub>2</sub>O with the WO<sub>3</sub> support as revealed by the XRD analyses. The as-prepared CuWO<sub>4</sub>@WO<sub>3</sub> sensors have been exposed to 10 ppm of CO or 0.4 ppm of NO<sub>2</sub> (RH = 50%). At the operating temperature of 445 °C, a normalized response of 620% towards NO<sub>2</sub> is obtained whereas the response to CO is significantly lower (S = 30%). Under these conditions, the sensors prepared either with pristine CuO or WO<sub>3</sub> nanostructures are sensitive to only one of the two investigated gases, i.e., CO and NO<sub>2</sub>, respectively. Interestingly, when the CuWO<sub>4</sub>@WO<sub>3</sub> sensitive layer is exposed to UV light emitted from a 365 nm Schottky diode, its sensitivity towards CO vanishes whereas the response towards NO<sub>2</sub> remains high. Thus, the application of UV illumination allowed us to modify the selectivity of the device. This new nanocomposite sensor is a versatile sensitive layer that will be integrated into a gas sensor array dedicated to electronic nose platforms. |
first_indexed | 2024-03-10T22:55:46Z |
format | Article |
id | doaj.art-f07def3fbee04a88909ad70583ea77e1 |
institution | Directory Open Access Journal |
issn | 2227-9040 |
language | English |
last_indexed | 2024-03-10T22:55:46Z |
publishDate | 2023-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Chemosensors |
spelling | doaj.art-f07def3fbee04a88909ad70583ea77e12023-11-19T10:02:10ZengMDPI AGChemosensors2227-90402023-09-0111949510.3390/chemosensors11090495Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O NanoleavesJustyna Jońca0Kevin Castello-Lux1Katia Fajerwerg2Myrtil L. Kahn3Vincent Collière4Philippe Menini5Izabela Sówka6Pierre Fau7Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50-377 Wroclaw, PolandLaboratoire de Chimie de Coordination, Centre Nationale de la Recherche Scientifique, CNRS 205 Route de Narbonne, 31400 Toulouse, FranceLaboratoire de Chimie de Coordination, Centre Nationale de la Recherche Scientifique, CNRS 205 Route de Narbonne, 31400 Toulouse, FranceLaboratoire de Chimie de Coordination, Centre Nationale de la Recherche Scientifique, CNRS 205 Route de Narbonne, 31400 Toulouse, FranceLaboratoire de Chimie de Coordination, Centre Nationale de la Recherche Scientifique, CNRS 205 Route de Narbonne, 31400 Toulouse, FranceLaboratoire d’Analyse et d’Architecture des Systèmes, Centre National de la Recherche Scientifique, Université de Toulouse, UPS, 7 Avenue du Colonel Roche, F-31031 Toulouse, FranceDepartment of Environment Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50-377 Wroclaw, PolandLaboratoire de Physique et Chimie des Nano-objets, LPCNO-INSA, UMR 5215, 135 Avenue de Rangueil, CEDEX 4, 31077 Toulouse, FranceThe nanometer size Cu<sub>2</sub>O@WO<sub>3</sub>·H<sub>2</sub>O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O nanoleaves. The synthesis has been performed in toluene without the addition of any ancillary ligands. The prepared nanocomposite has been deposited as a gas-sensitive layer on miniaturized silicon devices and heated up gradually to 500 °C in the ambient air. During the heating, the CuWO<sub>4</sub> phase is formed upon the reaction of Cu<sub>2</sub>O with the WO<sub>3</sub> support as revealed by the XRD analyses. The as-prepared CuWO<sub>4</sub>@WO<sub>3</sub> sensors have been exposed to 10 ppm of CO or 0.4 ppm of NO<sub>2</sub> (RH = 50%). At the operating temperature of 445 °C, a normalized response of 620% towards NO<sub>2</sub> is obtained whereas the response to CO is significantly lower (S = 30%). Under these conditions, the sensors prepared either with pristine CuO or WO<sub>3</sub> nanostructures are sensitive to only one of the two investigated gases, i.e., CO and NO<sub>2</sub>, respectively. Interestingly, when the CuWO<sub>4</sub>@WO<sub>3</sub> sensitive layer is exposed to UV light emitted from a 365 nm Schottky diode, its sensitivity towards CO vanishes whereas the response towards NO<sub>2</sub> remains high. Thus, the application of UV illumination allowed us to modify the selectivity of the device. This new nanocomposite sensor is a versatile sensitive layer that will be integrated into a gas sensor array dedicated to electronic nose platforms.https://www.mdpi.com/2227-9040/11/9/495gas sensorsCuWO<sub>4</sub>@WO<sub>3</sub> nanocompositen-n heterojunctionmetal–organic synthesisCO and NO<sub>2</sub> detectionselectivity |
spellingShingle | Justyna Jońca Kevin Castello-Lux Katia Fajerwerg Myrtil L. Kahn Vincent Collière Philippe Menini Izabela Sówka Pierre Fau Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves Chemosensors gas sensors CuWO<sub>4</sub>@WO<sub>3</sub> nanocomposite n-n heterojunction metal–organic synthesis CO and NO<sub>2</sub> detection selectivity |
title | Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves |
title_full | Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves |
title_fullStr | Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves |
title_full_unstemmed | Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves |
title_short | Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves |
title_sort | gas sensing properties of cuwo sub 4 sub wo sub 3 sub n n heterojunction prepared by direct hydrolysis of mesitylcopper i on wo sub 3 sub ·2h sub 2 sub o nanoleaves |
topic | gas sensors CuWO<sub>4</sub>@WO<sub>3</sub> nanocomposite n-n heterojunction metal–organic synthesis CO and NO<sub>2</sub> detection selectivity |
url | https://www.mdpi.com/2227-9040/11/9/495 |
work_keys_str_mv | AT justynajonca gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves AT kevincastellolux gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves AT katiafajerwerg gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves AT myrtillkahn gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves AT vincentcolliere gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves AT philippemenini gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves AT izabelasowka gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves AT pierrefau gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves |