Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves

The nanometer size Cu<sub>2</sub>O@WO<sub>3</sub>·H<sub>2</sub>O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O nanoleaves. The synthesis has been performed in toluene wi...

Full description

Bibliographic Details
Main Authors: Justyna Jońca, Kevin Castello-Lux, Katia Fajerwerg, Myrtil L. Kahn, Vincent Collière, Philippe Menini, Izabela Sówka, Pierre Fau
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Chemosensors
Subjects:
Online Access:https://www.mdpi.com/2227-9040/11/9/495
_version_ 1797580845403340800
author Justyna Jońca
Kevin Castello-Lux
Katia Fajerwerg
Myrtil L. Kahn
Vincent Collière
Philippe Menini
Izabela Sówka
Pierre Fau
author_facet Justyna Jońca
Kevin Castello-Lux
Katia Fajerwerg
Myrtil L. Kahn
Vincent Collière
Philippe Menini
Izabela Sówka
Pierre Fau
author_sort Justyna Jońca
collection DOAJ
description The nanometer size Cu<sub>2</sub>O@WO<sub>3</sub>·H<sub>2</sub>O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O nanoleaves. The synthesis has been performed in toluene without the addition of any ancillary ligands. The prepared nanocomposite has been deposited as a gas-sensitive layer on miniaturized silicon devices and heated up gradually to 500 °C in the ambient air. During the heating, the CuWO<sub>4</sub> phase is formed upon the reaction of Cu<sub>2</sub>O with the WO<sub>3</sub> support as revealed by the XRD analyses. The as-prepared CuWO<sub>4</sub>@WO<sub>3</sub> sensors have been exposed to 10 ppm of CO or 0.4 ppm of NO<sub>2</sub> (RH = 50%). At the operating temperature of 445 °C, a normalized response of 620% towards NO<sub>2</sub> is obtained whereas the response to CO is significantly lower (S = 30%). Under these conditions, the sensors prepared either with pristine CuO or WO<sub>3</sub> nanostructures are sensitive to only one of the two investigated gases, i.e., CO and NO<sub>2</sub>, respectively. Interestingly, when the CuWO<sub>4</sub>@WO<sub>3</sub> sensitive layer is exposed to UV light emitted from a 365 nm Schottky diode, its sensitivity towards CO vanishes whereas the response towards NO<sub>2</sub> remains high. Thus, the application of UV illumination allowed us to modify the selectivity of the device. This new nanocomposite sensor is a versatile sensitive layer that will be integrated into a gas sensor array dedicated to electronic nose platforms.
first_indexed 2024-03-10T22:55:46Z
format Article
id doaj.art-f07def3fbee04a88909ad70583ea77e1
institution Directory Open Access Journal
issn 2227-9040
language English
last_indexed 2024-03-10T22:55:46Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Chemosensors
spelling doaj.art-f07def3fbee04a88909ad70583ea77e12023-11-19T10:02:10ZengMDPI AGChemosensors2227-90402023-09-0111949510.3390/chemosensors11090495Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O NanoleavesJustyna Jońca0Kevin Castello-Lux1Katia Fajerwerg2Myrtil L. Kahn3Vincent Collière4Philippe Menini5Izabela Sówka6Pierre Fau7Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50-377 Wroclaw, PolandLaboratoire de Chimie de Coordination, Centre Nationale de la Recherche Scientifique, CNRS 205 Route de Narbonne, 31400 Toulouse, FranceLaboratoire de Chimie de Coordination, Centre Nationale de la Recherche Scientifique, CNRS 205 Route de Narbonne, 31400 Toulouse, FranceLaboratoire de Chimie de Coordination, Centre Nationale de la Recherche Scientifique, CNRS 205 Route de Narbonne, 31400 Toulouse, FranceLaboratoire de Chimie de Coordination, Centre Nationale de la Recherche Scientifique, CNRS 205 Route de Narbonne, 31400 Toulouse, FranceLaboratoire d’Analyse et d’Architecture des Systèmes, Centre National de la Recherche Scientifique, Université de Toulouse, UPS, 7 Avenue du Colonel Roche, F-31031 Toulouse, FranceDepartment of Environment Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, 50-377 Wroclaw, PolandLaboratoire de Physique et Chimie des Nano-objets, LPCNO-INSA, UMR 5215, 135 Avenue de Rangueil, CEDEX 4, 31077 Toulouse, FranceThe nanometer size Cu<sub>2</sub>O@WO<sub>3</sub>·H<sub>2</sub>O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O nanoleaves. The synthesis has been performed in toluene without the addition of any ancillary ligands. The prepared nanocomposite has been deposited as a gas-sensitive layer on miniaturized silicon devices and heated up gradually to 500 °C in the ambient air. During the heating, the CuWO<sub>4</sub> phase is formed upon the reaction of Cu<sub>2</sub>O with the WO<sub>3</sub> support as revealed by the XRD analyses. The as-prepared CuWO<sub>4</sub>@WO<sub>3</sub> sensors have been exposed to 10 ppm of CO or 0.4 ppm of NO<sub>2</sub> (RH = 50%). At the operating temperature of 445 °C, a normalized response of 620% towards NO<sub>2</sub> is obtained whereas the response to CO is significantly lower (S = 30%). Under these conditions, the sensors prepared either with pristine CuO or WO<sub>3</sub> nanostructures are sensitive to only one of the two investigated gases, i.e., CO and NO<sub>2</sub>, respectively. Interestingly, when the CuWO<sub>4</sub>@WO<sub>3</sub> sensitive layer is exposed to UV light emitted from a 365 nm Schottky diode, its sensitivity towards CO vanishes whereas the response towards NO<sub>2</sub> remains high. Thus, the application of UV illumination allowed us to modify the selectivity of the device. This new nanocomposite sensor is a versatile sensitive layer that will be integrated into a gas sensor array dedicated to electronic nose platforms.https://www.mdpi.com/2227-9040/11/9/495gas sensorsCuWO<sub>4</sub>@WO<sub>3</sub> nanocompositen-n heterojunctionmetal–organic synthesisCO and NO<sub>2</sub> detectionselectivity
spellingShingle Justyna Jońca
Kevin Castello-Lux
Katia Fajerwerg
Myrtil L. Kahn
Vincent Collière
Philippe Menini
Izabela Sówka
Pierre Fau
Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves
Chemosensors
gas sensors
CuWO<sub>4</sub>@WO<sub>3</sub> nanocomposite
n-n heterojunction
metal–organic synthesis
CO and NO<sub>2</sub> detection
selectivity
title Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves
title_full Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves
title_fullStr Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves
title_full_unstemmed Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves
title_short Gas Sensing Properties of CuWO<sub>4</sub>@WO<sub>3</sub> n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO<sub>3</sub>·2H<sub>2</sub>O Nanoleaves
title_sort gas sensing properties of cuwo sub 4 sub wo sub 3 sub n n heterojunction prepared by direct hydrolysis of mesitylcopper i on wo sub 3 sub ·2h sub 2 sub o nanoleaves
topic gas sensors
CuWO<sub>4</sub>@WO<sub>3</sub> nanocomposite
n-n heterojunction
metal–organic synthesis
CO and NO<sub>2</sub> detection
selectivity
url https://www.mdpi.com/2227-9040/11/9/495
work_keys_str_mv AT justynajonca gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves
AT kevincastellolux gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves
AT katiafajerwerg gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves
AT myrtillkahn gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves
AT vincentcolliere gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves
AT philippemenini gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves
AT izabelasowka gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves
AT pierrefau gassensingpropertiesofcuwosub4subwosub3subnnheterojunctionpreparedbydirecthydrolysisofmesitylcopperionwosub3sub2hsub2subonanoleaves