Geothermal field and geology of the Caspian Sea region

The Caspian Sea and adjacent areas form the vast oil and gas-bearing megabasin. It consists of North Caspian, Middle Caspian, and South Caspian sedimentary basins. The granite-metamorphic basement of the basins becomes from north to south younger in the direction from Early Precambrian to Early Cimm...

Full description

Bibliographic Details
Main Authors: Siamak Mansouri Far, Vladimir I. Zui
Format: Article
Language:Belarusian
Published: Belarusian State University 2019-06-01
Series:Журнал Белорусского государственного университета: География, геология
Subjects:
Online Access:https://journals.bsu.by/index.php/geography/article/view/848
Description
Summary:The Caspian Sea and adjacent areas form the vast oil and gas-bearing megabasin. It consists of North Caspian, Middle Caspian, and South Caspian sedimentary basins. The granite-metamorphic basement of the basins becomes from north to south younger in the direction from Early Precambrian to Early Cimmerian age. It represents a transitional zone from the southern edge of the East European Craton to Alpine folding. Geothermal investigations have been carried out both in hundreds of deep boreholes and within the Caspian Sea and a few preliminary heat flow maps were published for the Caspian Sea region. All they excluded from consideration the southern part of the region within Iranian national borders. We prepared a new heat flow map including the northern Iran. The purpose of the article is to consider heat flow pattern within the whole Caspian Sea region including its southern part. Two vast high heat flow anomalies above 100 mW/m2 distinguished in the map: within the southwestern Iran and in waters of the Caspian Sea to the North of the Apsheron Ridge, separated by elongated strip of heat flow below 50 –55 mW/m 2 . A general tendency of heat flow from growing was distinguished from the Precambrian crustal blocks of the North Caspian Depression to the Alpine folding within the territory of Iran. Analysis of the heat flow pattern is discussed and two heat flow density profiles were compiled.
ISSN:2521-6740
2617-3972