Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold

Non-planar amides are usually transitional structures, that are involved in amide bond rotation and inversion of the nitrogen atom, but some ground-minimum non-planar amides have been reported. Non-planar amides are generally sensitive to water or other nucleophiles, so that the amide bond is readil...

Full description

Bibliographic Details
Main Authors: Diego Antonio Ocampo Gutiérrez de Velasco, Aoze Su, Luhan Zhai, Satowa Kinoshita, Yuko Otani, Tomohiko Ohwada
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/23/9/2363
Description
Summary:Non-planar amides are usually transitional structures, that are involved in amide bond rotation and inversion of the nitrogen atom, but some ground-minimum non-planar amides have been reported. Non-planar amides are generally sensitive to water or other nucleophiles, so that the amide bond is readily cleaved. In this article, we examine the reactivity profile of the base-catalyzed hydrolysis of 7-azabicyclo[2.2.1]heptane amides, which show pyramidalization of the amide nitrogen atom, and we compare the kinetics of the base-catalyzed hydrolysis of the benzamides of 7-azabicyclo[2.2.1]heptane and related monocyclic compounds. Unexpectedly, non-planar amides based on the 7-azabicyclo[2.2.1]heptane scaffold were found to be resistant to base-catalyzed hydrolysis. The calculated Gibbs free energies were consistent with this experimental finding. The contribution of thermal corrections (entropy term, –TΔS‡) was large; the entropy term (ΔS‡) took a large negative value, indicating significant order in the transition structure, which includes solvating water molecules.
ISSN:1420-3049