Multi-Source Data Analysis of Mesoscale Eddies and Their Effects on Surface Chlorophyll in the Bay of Bengal

Mesoscale eddies are important to ocean circulation due to their roles in the transport of mass, energy, and heat. This study employs a combination of data sources to initiate a statistical analysis of eddy spatiotemporal characteristics in the Bay of Bengal (BOB) to elucidate the sea surface and ve...

Full description

Bibliographic Details
Main Authors: Xiao Yang, Guangjun Xu, Yu Liu, Wenjin Sun, Changshui Xia, Changming Dong
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/21/3485
Description
Summary:Mesoscale eddies are important to ocean circulation due to their roles in the transport of mass, energy, and heat. This study employs a combination of data sources to initiate a statistical analysis of eddy spatiotemporal characteristics in the Bay of Bengal (BOB) to elucidate the sea surface and vertical structures of the eddies and their impacts on sea surface chlorophyll (Chl) distributions. The results suggest that 1237 cyclonic eddies (CEs) and 1121 anticyclonic eddies (AEs) were detected in 26 years. The number of two eddy polarities was almost the same, and most of them spread to the west or southwest direction. The vertical change of temperature (T) and salinity (S) caused by the eddies is studied and the anomalous eddies, i.e., a CE (AE) eddy with warm (cold) water at the center, are mainly distributed on the northeast side of the Island of Sri Lanka. Furthermore, CEs are found to increase Chl concentration in the surrounding sea by approximately 11.15%, while AEs decrease concentrations also by approximately 11.25%. Changes in Chl concentrations occur most rapidly during the mature and intensification eddy phases. Observations also indicate that the strong local current and wind fields are the primary mechanisms in eddy generation.
ISSN:2072-4292