Sodium Intake Estimation in Hospital Patients Using AI-Based Imaging: Prospective Pilot Study

BackgroundMeasurement of sodium intake in hospitalized patients is critical for their care. In this study, artificial intelligence (AI)–based imaging was performed to determine sodium intake in these patients. ObjectiveThe applicability of a diet management system...

Full description

Bibliographic Details
Main Authors: Jiwon Ryu, Sejoong Kim, Yejee Lim, Jung Hun Ohn, Sun-wook Kim, Jae Ho Cho, Hee Sun Park, Jongchan Lee, Eun Sun Kim, Nak-Hyun Kim, Ji Eun Song, Su Hwan Kim, Eui-Chang Suh, Doniyorjon Mukhtorov, Jung Hyun Park, Sung Kweon Kim, Hye Won Kim
Format: Article
Language:English
Published: JMIR Publications 2024-02-01
Series:JMIR Formative Research
Online Access:https://formative.jmir.org/2024/1/e48690
Description
Summary:BackgroundMeasurement of sodium intake in hospitalized patients is critical for their care. In this study, artificial intelligence (AI)–based imaging was performed to determine sodium intake in these patients. ObjectiveThe applicability of a diet management system was evaluated using AI-based imaging to assess the sodium content of diets prescribed for hospitalized patients. MethodsBased on the information on the already investigated nutrients and quantity of food, consumed sodium was analyzed through photographs obtained before and after a meal. We used a hybrid model that first leveraged the capabilities of the You Only Look Once, version 4 (YOLOv4) architecture for the detection of food and dish areas in images. Following this initial detection, 2 distinct approaches were adopted for further classification: a custom ResNet-101 model and a hyperspectral imaging-based technique. These methodologies focused on accurate classification and estimation of the food quantity and sodium amount, respectively. The 24-hour urine sodium (UNa) value was measured as a reference for evaluating the sodium intake. ResultsResults were analyzed using complete data from 25 participants out of the total 54 enrolled individuals. The median sodium intake calculated by the AI algorithm (AI-Na) was determined to be 2022.7 mg per day/person (adjusted by administered fluids). A significant correlation was observed between AI-Na and 24-hour UNa, while there was a notable disparity between them. A regression analysis, considering patient characteristics (eg, gender, age, renal function, the use of diuretics, and administered fluids) yielded a formula accounting for the interaction between AI-Na and 24-hour UNa. Consequently, it was concluded that AI-Na holds clinical significance in estimating salt intake for hospitalized patients using images without the need for 24-hour UNa measurements. The degree of correlation between AI-Na and 24-hour UNa was found to vary depending on the use of diuretics. ConclusionsThis study highlights the potential of AI-based imaging for determining sodium intake in hospitalized patients.
ISSN:2561-326X