Pramipexole has a neuroprotective effect in spinal cord injury and upregulates D2 receptor expression in the injured spinal cord tissue in rats

Spinal cord injury (SCI) has emerged as a prevalent condition with limited effective treatment options. The neuroprotective role of pramipexole (PPX) in inhibiting nerve cell apoptosis in central nervous system injuries is well established. Therefore, we investigated the effects of PPX in SCI. Adult...

Full description

Bibliographic Details
Main Authors: Xuchen Liu, Chengqiang Wang, Qingshan Peng, Birong Peng, Lixin Zhu
Format: Article
Language:English
Published: PeerJ Inc. 2023-09-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/16039.pdf
Description
Summary:Spinal cord injury (SCI) has emerged as a prevalent condition with limited effective treatment options. The neuroprotective role of pramipexole (PPX) in inhibiting nerve cell apoptosis in central nervous system injuries is well established. Therefore, we investigated the effects of PPX in SCI. Adult Sprague-Dawley rats were divided into four groups (sham, SCI, PPX-0.25, and PPX-2.0 groups) according to the PPX therapy (n = 24). Then, SCI was induced using the modified Allen method, and PPX was intravenously administered into the tail at dosages of 0.25 or 2.0 mg/kg following the injury. Motor function was evaluated using the Rivlin-modified inclined plate apparatus and the Basso Beattie Bresnahan (BBB) workout scale. Western blotting assay was used to measure protein expression levels of DRD2, NeuN, Bax/Bcl-2, and caspase-3. Furthermore, immunohistochemistry assessed the effect of PPX on the quantity of NeuN-positive cells in the spinal cord tissue after SCI. Our findings revealed that the BBB and slanting board test scores of the PPX-treated model groups were considerably higher for the SCI group and significantly lower for the sham operation group (P < 0.001). Moreover, the PPX-2.0 group exhibited significantly higher NeuN expression levels than the SCI group (P < 0.01). Our findings indicate that PPX exerts a neuroprotective effect in secondary neuronal injury following SCI, facilitating the recovery of hind limb function by downregulating Bax/Bcl-2, caspase-3, and IL-1β.
ISSN:2167-8359