Characteristics Analysis and Prediction of Land Use Evolution in the Source Region of the Yangtze River and Yellow River Based on Improved FLUS Model

Climate change profoundly alters land use in alpine regions, and delving into the evolutionary characteristics of these changes is crucial for the sustainable development of regional land resources and the gradual enhancement of the ecological environment. Taking the source region of the Yangtze and...

Full description

Bibliographic Details
Main Authors: Haoyue Gao, Tianling Qin, Qinghua Luan, Jianming Feng, Xiuyan Zhang, Yuhui Yang, Shu Xu, Jie Lu
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/13/3/393
Description
Summary:Climate change profoundly alters land use in alpine regions, and delving into the evolutionary characteristics of these changes is crucial for the sustainable development of regional land resources and the gradual enhancement of the ecological environment. Taking the source region of the Yangtze and Yellow River (SRYAYE) as a case study, we integrate permafrost and snowfall data into the Future Land Use Simulation model (FLUS). Analyzing historical land use, we predict and simulate the land use scenarios for 2030, 2035, and 2060 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 climates, and conduct a detailed analysis of the scale, composition, and pattern of land use in this area. Scale. The results showed that ① the Kappa coefficient of the improved FLUS model was higher than 0.927, and that the overall accuracy of the simulation was increased by 2.64%; ② the area of forest land and the high-coverage grassland will increase in the future and the center of gravity will migrate to the west, and that the area of moderate and low-coverage grassland will slightly decrease but tend to become green to the west; and ③ the fragmentation degree of the SRYAYE is decreasing, and the influence of human activities on the landscape pattern is weaker than in the past.
ISSN:2073-445X