Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers

This article is motivated by a problem posed by David A. Singer in 1999 and by the classical Euler elastic curves. We study spacelike and timelike curves in the Lorentz-Minkowski plane 𝕃2 whose curvature is expressed in terms of the Lorentzian pseudodistance to fixed geodesics. In this way, we get a...

Full description

Bibliographic Details
Main Authors: Castro Ildefonso, Castro-Infantes Ildefonso, Castro-Infantes Jesús
Format: Article
Language:English
Published: De Gruyter 2018-07-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2018-0069
_version_ 1818738561608843264
author Castro Ildefonso
Castro-Infantes Ildefonso
Castro-Infantes Jesús
author_facet Castro Ildefonso
Castro-Infantes Ildefonso
Castro-Infantes Jesús
author_sort Castro Ildefonso
collection DOAJ
description This article is motivated by a problem posed by David A. Singer in 1999 and by the classical Euler elastic curves. We study spacelike and timelike curves in the Lorentz-Minkowski plane 𝕃2 whose curvature is expressed in terms of the Lorentzian pseudodistance to fixed geodesics. In this way, we get a complete description of all the elastic curves in 𝕃2 and provide the Lorentzian versions of catenaries and grim-reaper curves. We show several uniqueness results for them in terms of their geometric linear momentum. In addition, we are able to get arc-length parametrizations of all the aforementioned curves and they are depicted graphically.
first_indexed 2024-12-18T01:10:54Z
format Article
id doaj.art-f0d8390d5afd49289b0ff91a3fcb146f
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-18T01:10:54Z
publishDate 2018-07-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-f0d8390d5afd49289b0ff91a3fcb146f2022-12-21T21:26:06ZengDe GruyterOpen Mathematics2391-54552018-07-0116174776610.1515/math-2018-0069math-2018-0069Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapersCastro Ildefonso0Castro-Infantes Ildefonso1Castro-Infantes Jesús2Departamento de Matemáticas, Universidad de Jaén, 23071Jaén, Spain and Instituto de Matemáticas (IEMath-GR)Departamento de Geometría y Topología, Universidad de Granada, 18071Granada, Spain and Instituto de Matemáticas (IEMath-GR)Departamento de Geometría y Topología, Universidad de Granada, 18071Granada, SpainThis article is motivated by a problem posed by David A. Singer in 1999 and by the classical Euler elastic curves. We study spacelike and timelike curves in the Lorentz-Minkowski plane 𝕃2 whose curvature is expressed in terms of the Lorentzian pseudodistance to fixed geodesics. In this way, we get a complete description of all the elastic curves in 𝕃2 and provide the Lorentzian versions of catenaries and grim-reaper curves. We show several uniqueness results for them in terms of their geometric linear momentum. In addition, we are able to get arc-length parametrizations of all the aforementioned curves and they are depicted graphically.https://doi.org/10.1515/math-2018-0069lorentzian curvescurvatureelastic curvescatenariesgrim-reaper curves53a3514h5053b3074h05
spellingShingle Castro Ildefonso
Castro-Infantes Ildefonso
Castro-Infantes Jesús
Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
Open Mathematics
lorentzian curves
curvature
elastic curves
catenaries
grim-reaper curves
53a35
14h50
53b30
74h05
title Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
title_full Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
title_fullStr Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
title_full_unstemmed Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
title_short Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
title_sort curves in the lorentz minkowski plane elasticae catenaries and grim reapers
topic lorentzian curves
curvature
elastic curves
catenaries
grim-reaper curves
53a35
14h50
53b30
74h05
url https://doi.org/10.1515/math-2018-0069
work_keys_str_mv AT castroildefonso curvesinthelorentzminkowskiplaneelasticaecatenariesandgrimreapers
AT castroinfantesildefonso curvesinthelorentzminkowskiplaneelasticaecatenariesandgrimreapers
AT castroinfantesjesus curvesinthelorentzminkowskiplaneelasticaecatenariesandgrimreapers