Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
This article is motivated by a problem posed by David A. Singer in 1999 and by the classical Euler elastic curves. We study spacelike and timelike curves in the Lorentz-Minkowski plane 𝕃2 whose curvature is expressed in terms of the Lorentzian pseudodistance to fixed geodesics. In this way, we get a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-07-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2018-0069 |
_version_ | 1818738561608843264 |
---|---|
author | Castro Ildefonso Castro-Infantes Ildefonso Castro-Infantes Jesús |
author_facet | Castro Ildefonso Castro-Infantes Ildefonso Castro-Infantes Jesús |
author_sort | Castro Ildefonso |
collection | DOAJ |
description | This article is motivated by a problem posed by David A. Singer in 1999 and by the classical Euler elastic curves. We study spacelike and timelike curves in the Lorentz-Minkowski plane 𝕃2 whose curvature is expressed in terms of the Lorentzian pseudodistance to fixed geodesics. In this way, we get a complete description of all the elastic curves in 𝕃2 and provide the Lorentzian versions of catenaries and grim-reaper curves. We show several uniqueness results for them in terms of their geometric linear momentum. In addition, we are able to get arc-length parametrizations of all the aforementioned curves and they are depicted graphically. |
first_indexed | 2024-12-18T01:10:54Z |
format | Article |
id | doaj.art-f0d8390d5afd49289b0ff91a3fcb146f |
institution | Directory Open Access Journal |
issn | 2391-5455 |
language | English |
last_indexed | 2024-12-18T01:10:54Z |
publishDate | 2018-07-01 |
publisher | De Gruyter |
record_format | Article |
series | Open Mathematics |
spelling | doaj.art-f0d8390d5afd49289b0ff91a3fcb146f2022-12-21T21:26:06ZengDe GruyterOpen Mathematics2391-54552018-07-0116174776610.1515/math-2018-0069math-2018-0069Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapersCastro Ildefonso0Castro-Infantes Ildefonso1Castro-Infantes Jesús2Departamento de Matemáticas, Universidad de Jaén, 23071Jaén, Spain and Instituto de Matemáticas (IEMath-GR)Departamento de Geometría y Topología, Universidad de Granada, 18071Granada, Spain and Instituto de Matemáticas (IEMath-GR)Departamento de Geometría y Topología, Universidad de Granada, 18071Granada, SpainThis article is motivated by a problem posed by David A. Singer in 1999 and by the classical Euler elastic curves. We study spacelike and timelike curves in the Lorentz-Minkowski plane 𝕃2 whose curvature is expressed in terms of the Lorentzian pseudodistance to fixed geodesics. In this way, we get a complete description of all the elastic curves in 𝕃2 and provide the Lorentzian versions of catenaries and grim-reaper curves. We show several uniqueness results for them in terms of their geometric linear momentum. In addition, we are able to get arc-length parametrizations of all the aforementioned curves and they are depicted graphically.https://doi.org/10.1515/math-2018-0069lorentzian curvescurvatureelastic curvescatenariesgrim-reaper curves53a3514h5053b3074h05 |
spellingShingle | Castro Ildefonso Castro-Infantes Ildefonso Castro-Infantes Jesús Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers Open Mathematics lorentzian curves curvature elastic curves catenaries grim-reaper curves 53a35 14h50 53b30 74h05 |
title | Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers |
title_full | Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers |
title_fullStr | Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers |
title_full_unstemmed | Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers |
title_short | Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers |
title_sort | curves in the lorentz minkowski plane elasticae catenaries and grim reapers |
topic | lorentzian curves curvature elastic curves catenaries grim-reaper curves 53a35 14h50 53b30 74h05 |
url | https://doi.org/10.1515/math-2018-0069 |
work_keys_str_mv | AT castroildefonso curvesinthelorentzminkowskiplaneelasticaecatenariesandgrimreapers AT castroinfantesildefonso curvesinthelorentzminkowskiplaneelasticaecatenariesandgrimreapers AT castroinfantesjesus curvesinthelorentzminkowskiplaneelasticaecatenariesandgrimreapers |