Scaling Limits of Random Graphs from Subcritical Classes: Extended abstract

We study the uniform random graph $\mathsf{C}_n$ with $n$ vertices drawn from a subcritical class of connected graphs. Our main result is that the rescaled graph $\mathsf{C}_n / \sqrt{n}$ converges to the Brownian Continuum Random Tree $\mathcal{T}_{\mathsf{e}}$ multiplied by a constant scaling fact...

Full description

Bibliographic Details
Main Authors: Konstantinos Panagiotou, Benedikt Stufler, Kerstin Weller
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2015-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2461/pdf
_version_ 1797270248675606528
author Konstantinos Panagiotou
Benedikt Stufler
Kerstin Weller
author_facet Konstantinos Panagiotou
Benedikt Stufler
Kerstin Weller
author_sort Konstantinos Panagiotou
collection DOAJ
description We study the uniform random graph $\mathsf{C}_n$ with $n$ vertices drawn from a subcritical class of connected graphs. Our main result is that the rescaled graph $\mathsf{C}_n / \sqrt{n}$ converges to the Brownian Continuum Random Tree $\mathcal{T}_{\mathsf{e}}$ multiplied by a constant scaling factor that depends on the class under consideration. In addition, we provide subgaussian tail bounds for the diameter $\text{D}(\mathsf{C}_n)$ and height $\text{H}(\mathsf{C}_n^\bullet)$ of the rooted random graph $\mathsf{C}_n^\bullet$. We give analytic expressions for the scaling factor of several classes, including for example the prominent class of outerplanar graphs. Our methods also enable us to study first passage percolation on $\mathsf{C}_n$, where we show the convergence to $\mathcal{T}_{\mathsf{e}}$ under an appropriate rescaling.
first_indexed 2024-04-25T02:01:15Z
format Article
id doaj.art-f0e0dcd0ad984b699205fafd88a99278
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:01:15Z
publishDate 2015-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-f0e0dcd0ad984b699205fafd88a992782024-03-07T15:01:25ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502015-01-01DMTCS Proceedings, 27th...Proceedings10.46298/dmtcs.24612461Scaling Limits of Random Graphs from Subcritical Classes: Extended abstractKonstantinos Panagiotou0Benedikt Stufler1https://orcid.org/0000-0001-9162-2144Kerstin Weller2Ludwig Maximilian University [Munich]Ludwig Maximilian University [Munich]Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich]We study the uniform random graph $\mathsf{C}_n$ with $n$ vertices drawn from a subcritical class of connected graphs. Our main result is that the rescaled graph $\mathsf{C}_n / \sqrt{n}$ converges to the Brownian Continuum Random Tree $\mathcal{T}_{\mathsf{e}}$ multiplied by a constant scaling factor that depends on the class under consideration. In addition, we provide subgaussian tail bounds for the diameter $\text{D}(\mathsf{C}_n)$ and height $\text{H}(\mathsf{C}_n^\bullet)$ of the rooted random graph $\mathsf{C}_n^\bullet$. We give analytic expressions for the scaling factor of several classes, including for example the prominent class of outerplanar graphs. Our methods also enable us to study first passage percolation on $\mathsf{C}_n$, where we show the convergence to $\mathcal{T}_{\mathsf{e}}$ under an appropriate rescaling.https://dmtcs.episciences.org/2461/pdfscaling limitsrandom graphscontinuum random trees[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
spellingShingle Konstantinos Panagiotou
Benedikt Stufler
Kerstin Weller
Scaling Limits of Random Graphs from Subcritical Classes: Extended abstract
Discrete Mathematics & Theoretical Computer Science
scaling limits
random graphs
continuum random trees
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
title Scaling Limits of Random Graphs from Subcritical Classes: Extended abstract
title_full Scaling Limits of Random Graphs from Subcritical Classes: Extended abstract
title_fullStr Scaling Limits of Random Graphs from Subcritical Classes: Extended abstract
title_full_unstemmed Scaling Limits of Random Graphs from Subcritical Classes: Extended abstract
title_short Scaling Limits of Random Graphs from Subcritical Classes: Extended abstract
title_sort scaling limits of random graphs from subcritical classes extended abstract
topic scaling limits
random graphs
continuum random trees
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
url https://dmtcs.episciences.org/2461/pdf
work_keys_str_mv AT konstantinospanagiotou scalinglimitsofrandomgraphsfromsubcriticalclassesextendedabstract
AT benediktstufler scalinglimitsofrandomgraphsfromsubcriticalclassesextendedabstract
AT kerstinweller scalinglimitsofrandomgraphsfromsubcriticalclassesextendedabstract