Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake Baikal

A precipitation monitoring station in Listvyanka was set up to determine the potential impact of the coastal area on the state of the adjacent air environment above Lake Baikal on its southwest coast. This article presents the results of studying the chemical composition of atmospheric deposition (a...

Full description

Bibliographic Details
Main Authors: Liudmila Golobokova, Olga Netsvetaeva, Tamara Khodzher, Vladimir Obolkin, Olga Khuriganova
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/12/10/1357
_version_ 1797515325159243776
author Liudmila Golobokova
Olga Netsvetaeva
Tamara Khodzher
Vladimir Obolkin
Olga Khuriganova
author_facet Liudmila Golobokova
Olga Netsvetaeva
Tamara Khodzher
Vladimir Obolkin
Olga Khuriganova
author_sort Liudmila Golobokova
collection DOAJ
description A precipitation monitoring station in Listvyanka was set up to determine the potential impact of the coastal area on the state of the adjacent air environment above Lake Baikal on its southwest coast. This article presents the results of studying the chemical composition of atmospheric deposition (aerosols and precipitation) at this station in 2020, and of their comparison with the data from previous years (from 2000 to 2019). In 2020, the ionic composition of atmospheric aerosols and precipitation had changed compared to previous years. In the modern period, the total amount of ions in aerosols, accounting for 0.46 ± 0.40 μg∙m<sup>−3</sup>, was lower by an order of magnitude than between 2000 and 2004. The average annual total amount of ions in precipitation in Listvyanka was almost unchanged from the average values in 2000–2010 and was 10% lower than that from 2011 to 2019 (7.3 mg/L). The ratio of major ions of sulphates and ammonium changed in the aerosol composition: compared to the period from 2000 to 2004, in 2020, the contribution of ammonium ions had decreased significantly, from 32% to 24%; the contribution of sulphates had increased to 43%, and the contribution of calcium had increased from 8 to 13%. Since 2010, the contribution of K<sup>+</sup> ions has increased to 8–10%, indicating the effect of smoke aerosols from wildfires. In precipitation, despite the dominance of sulphates (26%) and calcium (18%) throughout the year, the contribution of nitrates increases to 19% during the cold season (from October to March), while the contribution of ammonium ions and hydrogen ions increases to 13% and 17%, respectively, in the warm season (from April to September). In 2020, as in previous research years, the acidity of precipitation at the Listvyanka station was elevated (pH 5.1 ± 0.5); 50% of precipitation in 2020 had pH ˂ 5. We quantified ions in atmospheric aerosols and precipitation on the underlying surface of the coastal southwestern part of Lake Baikal. Ion fluxes with precipitation were the highest in the warm season, which corresponds to the annual maximum precipitation. Unlike previous years (from 2000 to 2010 and from 2011 to 2019), wet deposition of most ions—especially calcium, ammonium and nitrates—had decreased in 2020. There was a 35-fold decrease in nitrogen fluxes and a 5-fold decrease in sulphur fluxes in aerosols, as well as 1.6-fold and 1.3-fold decreases, respectively, in precipitation.
first_indexed 2024-03-10T06:43:54Z
format Article
id doaj.art-f0ead358672b4a93b0e87831d208800f
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-10T06:43:54Z
publishDate 2021-10-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-f0ead358672b4a93b0e87831d208800f2023-11-22T17:26:22ZengMDPI AGAtmosphere2073-44332021-10-011210135710.3390/atmos12101357Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake BaikalLiudmila Golobokova0Olga Netsvetaeva1Tamara Khodzher2Vladimir Obolkin3Olga Khuriganova4Limnological Institute Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, RussiaLimnological Institute Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, RussiaLimnological Institute Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, RussiaLimnological Institute Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, RussiaLimnological Institute Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, RussiaA precipitation monitoring station in Listvyanka was set up to determine the potential impact of the coastal area on the state of the adjacent air environment above Lake Baikal on its southwest coast. This article presents the results of studying the chemical composition of atmospheric deposition (aerosols and precipitation) at this station in 2020, and of their comparison with the data from previous years (from 2000 to 2019). In 2020, the ionic composition of atmospheric aerosols and precipitation had changed compared to previous years. In the modern period, the total amount of ions in aerosols, accounting for 0.46 ± 0.40 μg∙m<sup>−3</sup>, was lower by an order of magnitude than between 2000 and 2004. The average annual total amount of ions in precipitation in Listvyanka was almost unchanged from the average values in 2000–2010 and was 10% lower than that from 2011 to 2019 (7.3 mg/L). The ratio of major ions of sulphates and ammonium changed in the aerosol composition: compared to the period from 2000 to 2004, in 2020, the contribution of ammonium ions had decreased significantly, from 32% to 24%; the contribution of sulphates had increased to 43%, and the contribution of calcium had increased from 8 to 13%. Since 2010, the contribution of K<sup>+</sup> ions has increased to 8–10%, indicating the effect of smoke aerosols from wildfires. In precipitation, despite the dominance of sulphates (26%) and calcium (18%) throughout the year, the contribution of nitrates increases to 19% during the cold season (from October to March), while the contribution of ammonium ions and hydrogen ions increases to 13% and 17%, respectively, in the warm season (from April to September). In 2020, as in previous research years, the acidity of precipitation at the Listvyanka station was elevated (pH 5.1 ± 0.5); 50% of precipitation in 2020 had pH ˂ 5. We quantified ions in atmospheric aerosols and precipitation on the underlying surface of the coastal southwestern part of Lake Baikal. Ion fluxes with precipitation were the highest in the warm season, which corresponds to the annual maximum precipitation. Unlike previous years (from 2000 to 2010 and from 2011 to 2019), wet deposition of most ions—especially calcium, ammonium and nitrates—had decreased in 2020. There was a 35-fold decrease in nitrogen fluxes and a 5-fold decrease in sulphur fluxes in aerosols, as well as 1.6-fold and 1.3-fold decreases, respectively, in precipitation.https://www.mdpi.com/2073-4433/12/10/1357aerosoldepositionionsprecipitationstation Listvyanka
spellingShingle Liudmila Golobokova
Olga Netsvetaeva
Tamara Khodzher
Vladimir Obolkin
Olga Khuriganova
Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake Baikal
Atmosphere
aerosol
deposition
ions
precipitation
station Listvyanka
title Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake Baikal
title_full Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake Baikal
title_fullStr Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake Baikal
title_full_unstemmed Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake Baikal
title_short Atmospheric Deposition on the Southwest Coast of the Southern Basin of Lake Baikal
title_sort atmospheric deposition on the southwest coast of the southern basin of lake baikal
topic aerosol
deposition
ions
precipitation
station Listvyanka
url https://www.mdpi.com/2073-4433/12/10/1357
work_keys_str_mv AT liudmilagolobokova atmosphericdepositiononthesouthwestcoastofthesouthernbasinoflakebaikal
AT olganetsvetaeva atmosphericdepositiononthesouthwestcoastofthesouthernbasinoflakebaikal
AT tamarakhodzher atmosphericdepositiononthesouthwestcoastofthesouthernbasinoflakebaikal
AT vladimirobolkin atmosphericdepositiononthesouthwestcoastofthesouthernbasinoflakebaikal
AT olgakhuriganova atmosphericdepositiononthesouthwestcoastofthesouthernbasinoflakebaikal