A CNN-Transformer Network Combining CBAM for Change Detection in High-Resolution Remote Sensing Images

Current deep learning-based change detection approaches mostly produce convincing results by introducing attention mechanisms to traditional convolutional networks. However, given the limitation of the receptive field, convolution-based methods fall short of fully modelling global context and captur...

Full description

Bibliographic Details
Main Authors: Mengmeng Yin, Zhibo Chen, Chengjian Zhang
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/9/2406
Description
Summary:Current deep learning-based change detection approaches mostly produce convincing results by introducing attention mechanisms to traditional convolutional networks. However, given the limitation of the receptive field, convolution-based methods fall short of fully modelling global context and capturing long-range dependencies, thus insufficient in discriminating pseudo changes. Transformers have an efficient global spatio-temporal modelling capability, which is beneficial for the feature representation of changes of interest. However, the lack of detailed information may cause the transformer to locate the boundaries of changed regions inaccurately. Therefore, in this article, a hybrid CNN-transformer architecture named CTCANet, combining the strengths of convolutional networks, transformer, and attention mechanisms, is proposed for high-resolution bi-temporal remote sensing image change detection. To obtain high-level feature representations that reveal changes of interest, CTCANet utilizes tokenizer to embed the features of each image extracted by convolutional network into a sequence of tokens, and the transformer module to model global spatio-temporal context in token space. The optimal bi-temporal information fusion approach is explored here. Subsequently, the reconstructed features carrying deep abstract information are fed to the cascaded decoder to aggregate with features containing shallow fine-grained information, through skip connections. Such an aggregation empowers our model to maintain the completeness of changes and accurately locate small targets. Moreover, the integration of the convolutional block attention module enables the smoothing of semantic gaps between heterogeneous features and the accentuation of relevant changes in both the channel and spatial domains, resulting in more impressive outcomes. The performance of the proposed CTCANet surpasses that of recent certain state-of-the-art methods, as evidenced by experimental results on two publicly accessible datasets, LEVIR-CD and SYSU-CD.
ISSN:2072-4292