Modelling the steady state and dynamic conditions of a biotrickling filter treating styrene and acetone in air
The aim of this work was the study a trickling biofilter, where water was circulated throughout the bed. In the first steady state experiment, the packing materials used were 25mm Pall rings. The airflow rate was increased gradually and the concentration of styrene in the air stream was held constan...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Instituto de Tecnologia do Paraná (Tecpar)
2010-10-01
|
Series: | Brazilian Archives of Biology and Technology |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-89132010000500028 |
Summary: | The aim of this work was the study a trickling biofilter, where water was circulated throughout the bed. In the first steady state experiment, the packing materials used were 25mm Pall rings. The airflow rate was increased gradually and the concentration of styrene in the air stream was held constant. In the second experiment, 15mm Pall rings were used. In this case, the feed contained both styrene and a small amount of acetone. The concentration of acetone and the air flow rate were kept constant, but the styrene inlet concentration was increased. The concentrations were measured at the input, and also at an intermediate and the outlet position in the biotrickling filter to determine the concentration profile along the reactor. Using the values of coefficient of determination (R²) and the coefficient of variation of the fitted constant as criteria, a zero order model with diffusional limitation was chosen as the best representation of the data. Then a further, third, set of experiments were done at unsteady state, using step changes of the inlet concentration levels of both styrene and acetone at a steady air flow-rate . Inlet and outlet concentrations were measured as a function of time and the results were adequately described using a simple first order model. |
---|---|
ISSN: | 1516-8913 1678-4324 |