Experimental Investigation of Laser Ablation Characteristics on Nickel-Coated Beryllium Copper

As electronic products are miniaturized, the components of the spring contact probe are made very fine. Current mechanical processing may make it difficult to perform micro-machining with a high degree of precision. A laser is often used for the high precision micro-machining due to its advantages s...

Full description

Bibliographic Details
Main Author: Dongkyoung Lee
Format: Article
Language:English
Published: MDPI AG 2018-03-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/8/4/211
Description
Summary:As electronic products are miniaturized, the components of the spring contact probe are made very fine. Current mechanical processing may make it difficult to perform micro-machining with a high degree of precision. A laser is often used for the high precision micro-machining due to its advantages such as a contact-free process, high energy concentration, fast processing time, and applicability to almost every material. The production of micro-electronics using nickel-coated copper is rapidly increasing and laser material processing is becoming a key processing technology owing to high precision requirements. Before applying laser material processing, it is necessary to understand the ablation characteristics of the materials. Therefore, this study systematically investigates the ablation characteristics of nickel-coated beryllium copper. Key laser parameters are pulse duration (4~200 ns) and the total accumulated energy (1~1000 mJ). The processed workpiece is evaluated by analyzing the heat affected zone (HAZ), material removal zone (MRZ), and roundness. Moreover, the surface characteristics such as a burr, spatter, and roundness shapes are analyzed using scanning electron microscope (SEM).
ISSN:2075-4701