Separación de fuentes auditivas para pedagogía musical

Harmonics espera apoyar a la pedagogía musical, ofreciendo un producto concreto con el cual los interesados en aprender a tocar un instrumento puedan practicar. Se entrenó un modelo para identificar y aislar las pistas singulares de una canción, por medio de TensorFlow y herramientas para realizar l...

Full description

Bibliographic Details
Main Authors: Randy Darrell Lancheros-Molano, Juan Sebastián Triana-Perez, Juan Felipe Castañeda-Chaparro, Felipe Andrés Gutiérrez-Naranjo, Andrea del Pilar Rueda-Olarte
Format: Article
Language:English
Published: Universidad Autónoma de Bucaramanga 2021-05-01
Series:Revista Colombiana de Computación
Subjects:
Online Access:https://revistas.unab.edu.co/index.php/rcc/article/view/4151
Description
Summary:Harmonics espera apoyar a la pedagogía musical, ofreciendo un producto concreto con el cual los interesados en aprender a tocar un instrumento puedan practicar. Se entrenó un modelo para identificar y aislar las pistas singulares de una canción, por medio de TensorFlow y herramientas para realizar la separación de fuentes auditivas y producir partituras genuinas, basadas en un algoritmo de transcripción musical (para pianos, bajos, batería y voz, específicamente), que los principiantes puedan visualizar, editar y descargar (en formatos .PDF y .MIDI), ajustándose a su ritmo de práctica. Se consideraron tres métodos de separación de fuentes, bajo las siguientes restricciones: emplear una única canción como archivo de entrada, que ésta fuera moderadamente compleja (compuesta por un conjunto de entre tres y seis instrumentos) y que la cantidad de muestras –canciones compuestas por instrumentos relevantes y pistas de cada instrumento por separado– aptas para el entrenamiento del modelo, sean sumamente escasas.
ISSN:1657-2831
2539-2115