The Fractional Derivative of the Dirac Delta Function and Additional Results on the Inverse Laplace Transform of Irrational Functions

Motivated from studies on anomalous relaxation and diffusion, we show that the memory function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>(</mo><mi>t</mi...

Full description

Bibliographic Details
Main Author: Nicos Makris
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/1/18
Description
Summary:Motivated from studies on anomalous relaxation and diffusion, we show that the memory function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> of complex materials, that their creep compliance follows a power law, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∼</mo><msup><mi>t</mi><mi>q</mi></msup></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, is proportional to the fractional derivative of the Dirac delta function, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mrow><msup><mi mathvariant="normal">d</mi><mi>q</mi></msup><mi>δ</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>0</mn><mo>)</mo></mrow></mrow><mrow><mi mathvariant="normal">d</mi><msup><mi>t</mi><mi>q</mi></msup></mrow></mfrac></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>. This leads to the finding that the inverse Laplace transform of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>s</mi><mi>q</mi></msup></semantics></math></inline-formula> for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula> is the fractional derivative of the Dirac delta function, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><mrow><msup><mi mathvariant="normal">d</mi><mi>q</mi></msup><mi>δ</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>0</mn><mo>)</mo></mrow></mrow><mrow><mi mathvariant="normal">d</mi><msup><mi>t</mi><mi>q</mi></msup></mrow></mfrac></semantics></math></inline-formula>. This result, in association with the convolution theorem, makes possible the calculation of the inverse Laplace transform of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfrac><msup><mi>s</mi><mi>q</mi></msup><mrow><msup><mi>s</mi><mi>α</mi></msup><mo>∓</mo><mi>λ</mi></mrow></mfrac></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo><</mo><mi>q</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, which is the fractional derivative of order <i>q</i> of the Rabotnov function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mo>±</mo><mi>λ</mi><mo>,</mo><mspace width="0.166667em"></mspace><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>t</mi><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mi>E</mi><mrow><mi>α</mi><mo>,</mo><mspace width="0.166667em"></mspace><mi>α</mi></mrow></msub><mrow><mo>(</mo><mo>±</mo><mi>λ</mi><msup><mi>t</mi><mi>α</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The fractional derivative of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula> of the Rabotnov function, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><mo>±</mo><mi>λ</mi><mo>,</mo><mspace width="0.166667em"></mspace><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> produces singularities that are extracted with a finite number of fractional derivatives of the Dirac delta function depending on the strength of <i>q</i> in association with the recurrence formula of the two-parameter Mittag–Leffler function.
ISSN:2504-3110