Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and Plasma

In metabolic diagnostics, there is an emerging need for a comprehensive test to acquire a complete view of metabolite status. Here, we describe a non-quantitative direct-infusion high-resolution mass spectrometry (DI-HRMS) based metabolomics method and evaluate the method for both dried blood spots...

Full description

Bibliographic Details
Main Authors: Hanneke A. Haijes, Marcel Willemsen, Maria Van der Ham, Johan Gerrits, Mia L. Pras-Raves, Hubertus C. M. T. Prinsen, Peter M. Van Hasselt, Monique G. M. De Sain-van der Velden, Nanda M. Verhoeven-Duif, Judith J. M. Jans
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Metabolites
Subjects:
Online Access:http://www.mdpi.com/2218-1989/9/1/12
_version_ 1818130055391346688
author Hanneke A. Haijes
Marcel Willemsen
Maria Van der Ham
Johan Gerrits
Mia L. Pras-Raves
Hubertus C. M. T. Prinsen
Peter M. Van Hasselt
Monique G. M. De Sain-van der Velden
Nanda M. Verhoeven-Duif
Judith J. M. Jans
author_facet Hanneke A. Haijes
Marcel Willemsen
Maria Van der Ham
Johan Gerrits
Mia L. Pras-Raves
Hubertus C. M. T. Prinsen
Peter M. Van Hasselt
Monique G. M. De Sain-van der Velden
Nanda M. Verhoeven-Duif
Judith J. M. Jans
author_sort Hanneke A. Haijes
collection DOAJ
description In metabolic diagnostics, there is an emerging need for a comprehensive test to acquire a complete view of metabolite status. Here, we describe a non-quantitative direct-infusion high-resolution mass spectrometry (DI-HRMS) based metabolomics method and evaluate the method for both dried blood spots (DBS) and plasma. 110 DBS of 42 patients harboring 23 different inborn errors of metabolism (IEM) and 86 plasma samples of 38 patients harboring 21 different IEM were analyzed using DI-HRMS. A peak calling pipeline developed in R programming language provided Z-scores for ~1875 mass peaks corresponding to ~3835 metabolite annotations (including isomers) per sample. Based on metabolite Z-scores, patients were assigned a ‘most probable diagnosis’ by an investigator blinded for the known diagnoses of the patients. Based on DBS sample analysis, 37/42 of the patients, corresponding to 22/23 IEM, could be correctly assigned a ‘most probable diagnosis’. Plasma sample analysis, resulted in a correct ‘most probable diagnosis’ in 32/38 of the patients, corresponding to 19/21 IEM. The added clinical value of the method was illustrated by a case wherein DI-HRMS metabolomics aided interpretation of a variant of unknown significance (VUS) identified by whole-exome sequencing. In summary, non-quantitative DI-HRMS metabolomics in DBS and plasma is a very consistent, high-throughput and nonselective method for investigating the metabolome in genetic disease.
first_indexed 2024-12-11T07:58:57Z
format Article
id doaj.art-f11723bf334b4ab69cbe6cb8e48d9633
institution Directory Open Access Journal
issn 2218-1989
language English
last_indexed 2024-12-11T07:58:57Z
publishDate 2019-01-01
publisher MDPI AG
record_format Article
series Metabolites
spelling doaj.art-f11723bf334b4ab69cbe6cb8e48d96332022-12-22T01:15:10ZengMDPI AGMetabolites2218-19892019-01-01911210.3390/metabo9010012metabo9010012Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and PlasmaHanneke A. Haijes0Marcel Willemsen1Maria Van der Ham2Johan Gerrits3Mia L. Pras-Raves4Hubertus C. M. T. Prinsen5Peter M. Van Hasselt6Monique G. M. De Sain-van der Velden7Nanda M. Verhoeven-Duif8Judith J. M. Jans9Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diseases, Department of Child Health, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsSection Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584 EA Utrecht, The NetherlandsIn metabolic diagnostics, there is an emerging need for a comprehensive test to acquire a complete view of metabolite status. Here, we describe a non-quantitative direct-infusion high-resolution mass spectrometry (DI-HRMS) based metabolomics method and evaluate the method for both dried blood spots (DBS) and plasma. 110 DBS of 42 patients harboring 23 different inborn errors of metabolism (IEM) and 86 plasma samples of 38 patients harboring 21 different IEM were analyzed using DI-HRMS. A peak calling pipeline developed in R programming language provided Z-scores for ~1875 mass peaks corresponding to ~3835 metabolite annotations (including isomers) per sample. Based on metabolite Z-scores, patients were assigned a ‘most probable diagnosis’ by an investigator blinded for the known diagnoses of the patients. Based on DBS sample analysis, 37/42 of the patients, corresponding to 22/23 IEM, could be correctly assigned a ‘most probable diagnosis’. Plasma sample analysis, resulted in a correct ‘most probable diagnosis’ in 32/38 of the patients, corresponding to 19/21 IEM. The added clinical value of the method was illustrated by a case wherein DI-HRMS metabolomics aided interpretation of a variant of unknown significance (VUS) identified by whole-exome sequencing. In summary, non-quantitative DI-HRMS metabolomics in DBS and plasma is a very consistent, high-throughput and nonselective method for investigating the metabolome in genetic disease.http://www.mdpi.com/2218-1989/9/1/12metabolomicsinborn errors of metabolismdirect-infusion mass spectrometryIEMDIMS
spellingShingle Hanneke A. Haijes
Marcel Willemsen
Maria Van der Ham
Johan Gerrits
Mia L. Pras-Raves
Hubertus C. M. T. Prinsen
Peter M. Van Hasselt
Monique G. M. De Sain-van der Velden
Nanda M. Verhoeven-Duif
Judith J. M. Jans
Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and Plasma
Metabolites
metabolomics
inborn errors of metabolism
direct-infusion mass spectrometry
IEM
DIMS
title Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and Plasma
title_full Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and Plasma
title_fullStr Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and Plasma
title_full_unstemmed Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and Plasma
title_short Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and Plasma
title_sort direct infusion based metabolomics identifies metabolic disease in patients dried blood spots and plasma
topic metabolomics
inborn errors of metabolism
direct-infusion mass spectrometry
IEM
DIMS
url http://www.mdpi.com/2218-1989/9/1/12
work_keys_str_mv AT hannekeahaijes directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT marcelwillemsen directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT mariavanderham directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT johangerrits directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT mialprasraves directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT hubertuscmtprinsen directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT petermvanhasselt directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT moniquegmdesainvandervelden directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT nandamverhoevenduif directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma
AT judithjmjans directinfusionbasedmetabolomicsidentifiesmetabolicdiseaseinpatientsdriedbloodspotsandplasma