The spectrality of symmetric additive measures

Let $\rho $ be a symmetric measure of Lebesgue type, i.e., \begin{equation*} \rho =\frac{1}{2}(\mu \times \delta _0+\delta _0\times \mu ), \end{equation*} where the component measure $\mu $ is the Lebesgue measure supported on $[t, t+1]$ for $t\in \mathbb{Q}\setminus \lbrace -\frac{1}{2}\rbrace $...

Full description

Bibliographic Details
Main Authors: Ai, Wen-Hui, Lu, Zheng-Yi, Zhou, Ting
Format: Article
Language:English
Published: Académie des sciences 2023-05-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.435/
_version_ 1797651508074905600
author Ai, Wen-Hui
Lu, Zheng-Yi
Zhou, Ting
author_facet Ai, Wen-Hui
Lu, Zheng-Yi
Zhou, Ting
author_sort Ai, Wen-Hui
collection DOAJ
description Let $\rho $ be a symmetric measure of Lebesgue type, i.e., \begin{equation*} \rho =\frac{1}{2}(\mu \times \delta _0+\delta _0\times \mu ), \end{equation*} where the component measure $\mu $ is the Lebesgue measure supported on $[t, t+1]$ for $t\in \mathbb{Q}\setminus \lbrace -\frac{1}{2}\rbrace $ and $\delta _{0}$ is the Dirac measure at $0$. We prove that $\rho $ is a spectral measure if and only if $ t \in \frac{1}{2}\mathbb{Z}$. In this case, $L^2(\rho )$ has a unique orthonormal basis of the form \[ \left\lbrace e^{2\pi i (\lambda x-\lambda y)}:\lambda \in \Lambda _0\right\rbrace , \] where $\Lambda _0$ is the spectrum of the Lebesgue measure supported on $[-t-1,-t]\cup [t,t+1]$. Our result answers some questions raised by Lai, Liu and Prince [JFA, 2021].
first_indexed 2024-03-11T16:16:47Z
format Article
id doaj.art-f133b2ad629746fa9870222212e31833
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:16:47Z
publishDate 2023-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-f133b2ad629746fa9870222212e318332023-10-24T14:20:34ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-05-01361G478379310.5802/crmath.43510.5802/crmath.435The spectrality of symmetric additive measuresAi, Wen-Hui0Lu, Zheng-Yi1Zhou, Ting2Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. ChinaKey Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. ChinaSchool of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. ChinaLet $\rho $ be a symmetric measure of Lebesgue type, i.e., \begin{equation*} \rho =\frac{1}{2}(\mu \times \delta _0+\delta _0\times \mu ), \end{equation*} where the component measure $\mu $ is the Lebesgue measure supported on $[t, t+1]$ for $t\in \mathbb{Q}\setminus \lbrace -\frac{1}{2}\rbrace $ and $\delta _{0}$ is the Dirac measure at $0$. We prove that $\rho $ is a spectral measure if and only if $ t \in \frac{1}{2}\mathbb{Z}$. In this case, $L^2(\rho )$ has a unique orthonormal basis of the form \[ \left\lbrace e^{2\pi i (\lambda x-\lambda y)}:\lambda \in \Lambda _0\right\rbrace , \] where $\Lambda _0$ is the spectrum of the Lebesgue measure supported on $[-t-1,-t]\cup [t,t+1]$. Our result answers some questions raised by Lai, Liu and Prince [JFA, 2021].https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.435/
spellingShingle Ai, Wen-Hui
Lu, Zheng-Yi
Zhou, Ting
The spectrality of symmetric additive measures
Comptes Rendus. Mathématique
title The spectrality of symmetric additive measures
title_full The spectrality of symmetric additive measures
title_fullStr The spectrality of symmetric additive measures
title_full_unstemmed The spectrality of symmetric additive measures
title_short The spectrality of symmetric additive measures
title_sort spectrality of symmetric additive measures
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.435/
work_keys_str_mv AT aiwenhui thespectralityofsymmetricadditivemeasures
AT luzhengyi thespectralityofsymmetricadditivemeasures
AT zhouting thespectralityofsymmetricadditivemeasures
AT aiwenhui spectralityofsymmetricadditivemeasures
AT luzhengyi spectralityofsymmetricadditivemeasures
AT zhouting spectralityofsymmetricadditivemeasures